Cargando…
Training in Use of Brain–Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements
Objective: Brain-machine interfaces (BMIs) are useful for inducing plastic changes in cortical representation. A BMI first decodes hand movements using cortical signals and then converts the decoded information into movements of a robotic hand. By using the BMI robotic hand, the cortical representat...
Autores principales: | Fukuma, Ryohei, Yanagisawa, Takufumi, Yokoi, Hiroshi, Hirata, Masayuki, Yoshimine, Toshiki, Saitoh, Youichi, Kamitani, Yukiyasu, Kishima, Haruhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050372/ https://www.ncbi.nlm.nih.gov/pubmed/30050405 http://dx.doi.org/10.3389/fnins.2018.00478 |
Ejemplares similares
-
Closed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals
por: Fukuma, Ryohei, et al.
Publicado: (2015) -
Real-Time Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals from Paralysed Patients
por: Fukuma, Ryohei, et al.
Publicado: (2016) -
Corrigendum: Real-Time Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals from Paralysed Patients
por: Fukuma, Ryohei, et al.
Publicado: (2016) -
Induced sensorimotor brain plasticity controls pain in phantom limb patients
por: Yanagisawa, Takufumi, et al.
Publicado: (2016) -
MEG–BMI to Control Phantom Limb Pain
por: YANAGISAWA, Takufumi, et al.
Publicado: (2018)