Cargando…
Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics
The active-site structure, reaction mechanism, and product selectivity of the industrially important selective hydrogenation of 1,3-butadiene are investigated using first principles for an emerging single-atom Pd catalyst anchored on graphene. Density functional theory calculations suggest that the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050543/ https://www.ncbi.nlm.nih.gov/pubmed/30079202 http://dx.doi.org/10.1039/c8sc00776d |
_version_ | 1783340359434108928 |
---|---|
author | Feng, Yingxin Zhou, Linsen Wan, Qiang Lin, Sen Guo, Hua |
author_facet | Feng, Yingxin Zhou, Linsen Wan, Qiang Lin, Sen Guo, Hua |
author_sort | Feng, Yingxin |
collection | PubMed |
description | The active-site structure, reaction mechanism, and product selectivity of the industrially important selective hydrogenation of 1,3-butadiene are investigated using first principles for an emerging single-atom Pd catalyst anchored on graphene. Density functional theory calculations suggest that the mono-π-adsorbed reactant undergoes sequential hydrogenation by Pd-activated H(2). Importantly, the high selectivity towards 1-butene is attributed to the post-transition-state dynamics in the second hydrogenation step, which leads exclusively to the desorption of the product. This dynamical event prevails despite the existence of energetically preferred 1-butene adsorption on Pd, which would eventually lead to complete hydrogenation to butane and be thus inconsistent with experimental observations. This insight underscores the importance of dynamics in heterogeneous catalysis, which has so far been underappreciated. |
format | Online Article Text |
id | pubmed-6050543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-60505432018-08-03 Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics Feng, Yingxin Zhou, Linsen Wan, Qiang Lin, Sen Guo, Hua Chem Sci Chemistry The active-site structure, reaction mechanism, and product selectivity of the industrially important selective hydrogenation of 1,3-butadiene are investigated using first principles for an emerging single-atom Pd catalyst anchored on graphene. Density functional theory calculations suggest that the mono-π-adsorbed reactant undergoes sequential hydrogenation by Pd-activated H(2). Importantly, the high selectivity towards 1-butene is attributed to the post-transition-state dynamics in the second hydrogenation step, which leads exclusively to the desorption of the product. This dynamical event prevails despite the existence of energetically preferred 1-butene adsorption on Pd, which would eventually lead to complete hydrogenation to butane and be thus inconsistent with experimental observations. This insight underscores the importance of dynamics in heterogeneous catalysis, which has so far been underappreciated. Royal Society of Chemistry 2018-06-14 /pmc/articles/PMC6050543/ /pubmed/30079202 http://dx.doi.org/10.1039/c8sc00776d Text en This journal is © The Royal Society of Chemistry 2018 https://creativecommons.org/licenses/by-nc/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Feng, Yingxin Zhou, Linsen Wan, Qiang Lin, Sen Guo, Hua Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics |
title | Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics
|
title_full | Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics
|
title_fullStr | Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics
|
title_full_unstemmed | Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics
|
title_short | Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics
|
title_sort | selective hydrogenation of 1,3-butadiene catalyzed by a single pd atom anchored on graphene: the importance of dynamics |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050543/ https://www.ncbi.nlm.nih.gov/pubmed/30079202 http://dx.doi.org/10.1039/c8sc00776d |
work_keys_str_mv | AT fengyingxin selectivehydrogenationof13butadienecatalyzedbyasinglepdatomanchoredongraphenetheimportanceofdynamics AT zhoulinsen selectivehydrogenationof13butadienecatalyzedbyasinglepdatomanchoredongraphenetheimportanceofdynamics AT wanqiang selectivehydrogenationof13butadienecatalyzedbyasinglepdatomanchoredongraphenetheimportanceofdynamics AT linsen selectivehydrogenationof13butadienecatalyzedbyasinglepdatomanchoredongraphenetheimportanceofdynamics AT guohua selectivehydrogenationof13butadienecatalyzedbyasinglepdatomanchoredongraphenetheimportanceofdynamics |