Cargando…
Random forest versus logistic regression: a large-scale benchmark experiment
BACKGROUND AND GOAL: The Random Forest (RF) algorithm for regression and classification has considerably gained popularity since its introduction in 2001. Meanwhile, it has grown to a standard classification approach competing with logistic regression in many innovation-friendly scientific fields. R...
Autores principales: | Couronné, Raphael, Probst, Philipp, Boulesteix, Anne-Laure |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050737/ https://www.ncbi.nlm.nih.gov/pubmed/30016950 http://dx.doi.org/10.1186/s12859-018-2264-5 |
Ejemplares similares
-
Large-scale benchmark study of survival prediction methods using multi-omics data
por: Herrmann, Moritz, et al.
Publicado: (2020) -
Computing Leapfrog Regularization Paths with Applications to Large-Scale K-mer Logistic Regression
por: Benner, Philipp
Publicado: (2021) -
An AUC-based permutation variable importance measure for random forests
por: Janitza, Silke, et al.
Publicado: (2013) -
Conditional variable importance for random forests
por: Strobl, Carolin, et al.
Publicado: (2008) -
Analysis of genome-wide association data by large-scale Bayesian logistic regression
por: Wang, Yuanjia, et al.
Publicado: (2009)