Cargando…

Targeting MCT4 to reduce lactic acid secretion and glycolysis for treatment of neuroendocrine prostate cancer

Development of neuroendocrine prostate cancer (NEPC) is emerging as a major problem in clinical management of advanced prostate cancer (PCa). As increasingly potent androgen receptor (AR)‐targeting antiandrogens are more widely used, PCa transdifferentiation into AR‐independent NEPC as a mechanism o...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Stephen Yiu Chuen, Ettinger, Susan L., Lin, Dong, Xue, Hui, Ci, Xinpei, Nabavi, Noushin, Bell, Robert H., Mo, Fan, Gout, Peter W., Fleshner, Neil E., Gleave, Martin E., Collins, Colin C., Wang, Yuzhuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051138/
https://www.ncbi.nlm.nih.gov/pubmed/29905005
http://dx.doi.org/10.1002/cam4.1587
Descripción
Sumario:Development of neuroendocrine prostate cancer (NEPC) is emerging as a major problem in clinical management of advanced prostate cancer (PCa). As increasingly potent androgen receptor (AR)‐targeting antiandrogens are more widely used, PCa transdifferentiation into AR‐independent NEPC as a mechanism of treatment resistance becomes more common and precarious, since NEPC is a lethal PCa subtype urgently requiring effective therapy. Reprogrammed glucose metabolism of cancers, that is elevated aerobic glycolysis involving increased lactic acid production/secretion, plays a key role in multiple cancer‐promoting processes and has been implicated in therapeutics development. Here, we examined NEPC glucose metabolism using our unique panel of patient‐derived xenograft PCa models and patient tumors. By calculating metabolic pathway scores using gene expression data, we found that elevated glycolysis coupled to increased lactic acid production/secretion is an important metabolic feature of NEPC. Specific inhibition of expression of MCT4 (a plasma membrane lactic acid transporter) by antisense oligonucleotides led to reduced lactic acid secretion as well as reduced glucose metabolism and NEPC cell proliferation. Taken together, our results indicate that elevated glycolysis coupled to excessive MCT4‐mediated lactic acid secretion is clinically relevant and functionally important to NEPC. Inhibition of MCT4 expression appears to be a promising therapeutic strategy for NEPC.