Cargando…
Fractional-Order Deep Backpropagation Neural Network
In recent years, the research of artificial neural networks based on fractional calculus has attracted much attention. In this paper, we proposed a fractional-order deep backpropagation (BP) neural network model with L(2) regularization. The proposed network was optimized by the fractional gradient...
Autores principales: | Bao, Chunhui, Pu, Yifei, Zhang, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051328/ https://www.ncbi.nlm.nih.gov/pubmed/30065757 http://dx.doi.org/10.1155/2018/7361628 |
Ejemplares similares
-
Deep physical neural networks trained with backpropagation
por: Wright, Logan G., et al.
Publicado: (2022) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks
por: Shen, Guobin, et al.
Publicado: (2022) -
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022)