Cargando…
Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil
The contamination of pathogenic bacteria through irrigation water is a recognized risk factor for fresh produce. Irrigation water disinfection is an intervention strategy that could be applied to reduce the probability of microbiological contamination of crops. Disinfection treatments should be appl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051574/ https://www.ncbi.nlm.nih.gov/pubmed/30020939 http://dx.doi.org/10.1371/journal.pone.0199291 |
_version_ | 1783340543168741376 |
---|---|
author | Truchado, Pilar Gil, María Isabel Suslow, Trevor Allende, Ana |
author_facet | Truchado, Pilar Gil, María Isabel Suslow, Trevor Allende, Ana |
author_sort | Truchado, Pilar |
collection | PubMed |
description | The contamination of pathogenic bacteria through irrigation water is a recognized risk factor for fresh produce. Irrigation water disinfection is an intervention strategy that could be applied to reduce the probability of microbiological contamination of crops. Disinfection treatments should be applied ensuring minimum effective doses, which are efficient in inhibiting the microbial contamination while avoiding formation and accumulation of chemical residues. Among disinfection technologies available for growers, chlorine dioxide (ClO(2)) represents, after sodium hypochlorite, an alternative disinfection treatment, which is commercially applied by growers in the USA and Spain. However, in most of the cases, the suitability of this treatment has been tested against pathogenic bacteria and low attention have been given to the impact of chemical residues on the bacterial community of the vegetable tissue. The aim of this study was to (i) to evaluate the continual application of chlorine dioxide (ClO(2)) as a water disinfection treatment of irrigation water during baby spinach growth in commercial production open fields, and (ii) to determine the subsequent impact of these treatments on the bacterial communities in water, soil, and baby spinach. To gain insight into the changes in the bacterial community elicited by ClO(2), samples of treated and untreated irrigation water as well as the irrigated soil and baby spinach were analyzed using Miseq® Illumina sequencing platform. Next generation sequencing and multivariate statistical analysis revealed that ClO(2) treatment of irrigation water did not affect the diversity of the bacterial community of water, soil and crop, but significant differences were observed in the relative abundance of specific bacterial genera. This demonstrates the different susceptibility of the bacteria genera to the ClO(2) treatment. Based on the obtained results it can be concluded that the phyllosphere bacterial community of baby spinach was more influenced by the soil bacteria community rather than that of irrigation water. In the case of baby spinach, the use of low residual ClO(2) concentrations (approx. 0.25 mg/L) to treat irrigation water decreased the relative abundance of Pseudomonaceae (2.28-fold) and Enterobacteriaceae (2.5-fold) when comparing treated versus untreated baby spinach. Members of these two bacterial families are responsible for food spoilage and foodborne illnesses. Therefore, a reduction of these bacterial families might be beneficial for the crop and for food safety. In general it can be concluded that the constant application of ClO(2) as a disinfection treatment for irrigation water only caused changes in two bacterial families of the baby spinach and soil microbiota, without affecting the major phyla and classes. The significance of these changes in the bacterial community should be further evaluated. |
format | Online Article Text |
id | pubmed-6051574 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60515742018-07-27 Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil Truchado, Pilar Gil, María Isabel Suslow, Trevor Allende, Ana PLoS One Research Article The contamination of pathogenic bacteria through irrigation water is a recognized risk factor for fresh produce. Irrigation water disinfection is an intervention strategy that could be applied to reduce the probability of microbiological contamination of crops. Disinfection treatments should be applied ensuring minimum effective doses, which are efficient in inhibiting the microbial contamination while avoiding formation and accumulation of chemical residues. Among disinfection technologies available for growers, chlorine dioxide (ClO(2)) represents, after sodium hypochlorite, an alternative disinfection treatment, which is commercially applied by growers in the USA and Spain. However, in most of the cases, the suitability of this treatment has been tested against pathogenic bacteria and low attention have been given to the impact of chemical residues on the bacterial community of the vegetable tissue. The aim of this study was to (i) to evaluate the continual application of chlorine dioxide (ClO(2)) as a water disinfection treatment of irrigation water during baby spinach growth in commercial production open fields, and (ii) to determine the subsequent impact of these treatments on the bacterial communities in water, soil, and baby spinach. To gain insight into the changes in the bacterial community elicited by ClO(2), samples of treated and untreated irrigation water as well as the irrigated soil and baby spinach were analyzed using Miseq® Illumina sequencing platform. Next generation sequencing and multivariate statistical analysis revealed that ClO(2) treatment of irrigation water did not affect the diversity of the bacterial community of water, soil and crop, but significant differences were observed in the relative abundance of specific bacterial genera. This demonstrates the different susceptibility of the bacteria genera to the ClO(2) treatment. Based on the obtained results it can be concluded that the phyllosphere bacterial community of baby spinach was more influenced by the soil bacteria community rather than that of irrigation water. In the case of baby spinach, the use of low residual ClO(2) concentrations (approx. 0.25 mg/L) to treat irrigation water decreased the relative abundance of Pseudomonaceae (2.28-fold) and Enterobacteriaceae (2.5-fold) when comparing treated versus untreated baby spinach. Members of these two bacterial families are responsible for food spoilage and foodborne illnesses. Therefore, a reduction of these bacterial families might be beneficial for the crop and for food safety. In general it can be concluded that the constant application of ClO(2) as a disinfection treatment for irrigation water only caused changes in two bacterial families of the baby spinach and soil microbiota, without affecting the major phyla and classes. The significance of these changes in the bacterial community should be further evaluated. Public Library of Science 2018-07-18 /pmc/articles/PMC6051574/ /pubmed/30020939 http://dx.doi.org/10.1371/journal.pone.0199291 Text en © 2018 Truchado et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Truchado, Pilar Gil, María Isabel Suslow, Trevor Allende, Ana Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil |
title | Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil |
title_full | Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil |
title_fullStr | Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil |
title_full_unstemmed | Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil |
title_short | Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil |
title_sort | impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051574/ https://www.ncbi.nlm.nih.gov/pubmed/30020939 http://dx.doi.org/10.1371/journal.pone.0199291 |
work_keys_str_mv | AT truchadopilar impactofchlorinedioxidedisinfectionofirrigationwaterontheepiphyticbacterialcommunityofbabyspinachandunderlyingsoil AT gilmariaisabel impactofchlorinedioxidedisinfectionofirrigationwaterontheepiphyticbacterialcommunityofbabyspinachandunderlyingsoil AT suslowtrevor impactofchlorinedioxidedisinfectionofirrigationwaterontheepiphyticbacterialcommunityofbabyspinachandunderlyingsoil AT allendeana impactofchlorinedioxidedisinfectionofirrigationwaterontheepiphyticbacterialcommunityofbabyspinachandunderlyingsoil |