Cargando…
Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure
Temporally ordered multi-neuron patterns likely encode information in the brain. We introduce an unsupervised method, SPOTDisClust (Spike Pattern Optimal Transport Dissimilarity Clustering), for their detection from high-dimensional neural ensembles. SPOTDisClust measures similarity between two ense...
Autores principales: | Grossberger, Lukas, Battaglia, Francesco P., Vinck, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051652/ https://www.ncbi.nlm.nih.gov/pubmed/29979681 http://dx.doi.org/10.1371/journal.pcbi.1006283 |
Ejemplares similares
-
SpikeShip: A method for fast, unsupervised discovery of high-dimensional neural spiking patterns
por: Sotomayor-Gómez, Boris, et al.
Publicado: (2023) -
Temporal data mining via unsupervised ensemble learning
por: Yang, Yun
Publicado: (2016) -
A Comparison Study on Similarity and Dissimilarity Measures in Clustering Continuous Data
por: Shirkhorshidi, Ali Seyed, et al.
Publicado: (2015) -
A Global-Relationship Dissimilarity Measure for the k-Modes Clustering Algorithm
por: Zhou, Hongfang, et al.
Publicado: (2017) -
Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience
por: Mackevicius, Emily L, et al.
Publicado: (2019)