Cargando…
Potential biomarkers and therapeutic targets in cervical cancer: Insights from the meta-analysis of transcriptomics data within network biomedicine perspective
The malignant neoplasm of the cervix, cervical cancer, has effects on the reproductive tract. Although infection with oncogenic human papillomavirus is essential for cervical cancer development, it alone is insufficient to explain the development of cervical cancer. Therefore, other risk factors suc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051662/ https://www.ncbi.nlm.nih.gov/pubmed/30020984 http://dx.doi.org/10.1371/journal.pone.0200717 |
Sumario: | The malignant neoplasm of the cervix, cervical cancer, has effects on the reproductive tract. Although infection with oncogenic human papillomavirus is essential for cervical cancer development, it alone is insufficient to explain the development of cervical cancer. Therefore, other risk factors such as host genetic factors should be identified, and their importance in cervical cancer induction should be determined. Although gene expression profiling studies in the last decade have made significant molecular findings about cervical cancer, adequate screening and effective treatment strategies have yet to be achieved. In the current study, meta-analysis was performed on cervical cancer-associated transcriptome data and reporter biomolecules were identified at RNA (mRNA, miRNA), protein (receptor, transcription factor, etc.), and metabolite levels by the integration of gene expression profiles with genome-scale biomolecular networks. This approach revealed already-known biomarkers, tumor suppressors and oncogenes in cervical cancer as well as various receptors (e.g. ephrin receptors EPHA4, EPHA5, and EPHB2; endothelin receptors EDNRA and EDNRB; nuclear receptors NCOA3, NR2C1, and NR2C2), miRNAs (e.g., miR-192-5p, miR-193b-3p, and miR-215-5p), transcription factors (particularly E2F4, ETS1, and CUTL1), other proteins (e.g., KAT2B, PARP1, CDK1, GSK3B, WNK1, and CRYAB), and metabolites (particularly, arachidonic acids) as novel biomarker candidates and potential therapeutic targets. The differential expression profiles of all reporter biomolecules were cross-validated in independent RNA-Seq and miRNA-Seq datasets, and the prognostic power of several reporter biomolecules, including KAT2B, PCNA, CD86, miR-192-5p and miR-215-5p was also demonstrated. In this study, we reported valuable data for further experimental and clinical efforts, because the proposed biomolecules have significant potential as systems biomarkers for screening or therapeutic purposes in cervical carcinoma. |
---|