Cargando…

How different sterols contribute to saponin tolerant plasma membranes in sea cucumbers

Sea cucumbers produce saponins as a chemical defense mechanism, however their cells can tolerate the cytotoxic nature of these chemicals. To elucidate the molecular mechanisms behind this tolerance a suite of complementary biophysical tools was used, firstly using liposomes for in vitro techniques t...

Descripción completa

Detalles Bibliográficos
Autores principales: Claereboudt, Emily J. S., Eeckhaut, Igor, Lins, Laurence, Deleu, Magali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052070/
https://www.ncbi.nlm.nih.gov/pubmed/30022094
http://dx.doi.org/10.1038/s41598-018-29223-x
Descripción
Sumario:Sea cucumbers produce saponins as a chemical defense mechanism, however their cells can tolerate the cytotoxic nature of these chemicals. To elucidate the molecular mechanisms behind this tolerance a suite of complementary biophysical tools was used, firstly using liposomes for in vitro techniques then using in silico approaches for a molecular-level insight. The holothuroid saponin Frondoside A, caused significantly less permeabilization in liposomes containing a Δ(7) holothuroid sterol than those containing cholesterol and resulted in endothermic interactions versus exothermic interactions with cholesterol containing liposomes. Lipid phases simulations revealed that Frondoside A has an agglomerating effect on cholesterol domains, however, induced small irregular Δ(7) sterol clusters. Our results suggest that the structural peculiarities of holothuroid sterols provide sea cucumbers with a mechanism to mitigate the sterol-agglomerating effect of saponins, and therefore to protect their cells from the cytotoxicity of the saponins they produce.