Cargando…
Scalable photonic reinforcement learning by time-division multiplexing of laser chaos
Reinforcement learning involves decision-making in dynamic and uncertain environments and constitutes a crucial element of artificial intelligence. In our previous work, we experimentally demonstrated that the ultrafast chaotic oscillatory dynamics of lasers can be used to efficiently solve the two-...
Autores principales: | Naruse, Makoto, Mihana, Takatomo, Hori, Hirokazu, Saigo, Hayato, Okamura, Kazuya, Hasegawa, Mikio, Uchida, Atsushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052166/ https://www.ncbi.nlm.nih.gov/pubmed/30022085 http://dx.doi.org/10.1038/s41598-018-29117-y |
Ejemplares similares
-
Ultrafast photonic reinforcement learning based on laser chaos
por: Naruse, Makoto, et al.
Publicado: (2017) -
Controlling chaotic itinerancy in laser dynamics for reinforcement learning
por: Iwami, Ryugo, et al.
Publicado: (2022) -
Entangled-photon decision maker
por: Chauvet, Nicolas, et al.
Publicado: (2019) -
Author Correction: Ultrafast photonic reinforcement learning based on laser chaos
por: Naruse, Makoto, et al.
Publicado: (2018) -
Entangled N-photon states for fair and optimal social decision making
por: Chauvet, Nicolas, et al.
Publicado: (2020)