Cargando…
Predicting acute kidney injury in cancer patients using heterogeneous and irregular data
How can we predict the occurrence of acute kidney injury (AKI) in cancer patients based on machine learning with serum creatinine data? Given irregular and heterogeneous clinical data, how can we make the most of it for accurate AKI prediction? AKI is a common and significant complication in cancer...
Autores principales: | Park, Namyong, Kang, Eunjeong, Park, Minsu, Lee, Hajeong, Kang, Hee-Gyung, Yoon, Hyung-Jin, Kang, U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053162/ https://www.ncbi.nlm.nih.gov/pubmed/30024918 http://dx.doi.org/10.1371/journal.pone.0199839 |
Ejemplares similares
-
Acute kidney injury predicts all‐cause mortality in patients with cancer
por: Kang, Eunjeong, et al.
Publicado: (2019) -
Clinical Significance of Acute Kidney Injury in Lung Cancer Patients
por: Cho, Semin, et al.
Publicado: (2021) -
Clinical outcomes of posttransplantation diabetes mellitus in kidney transplantation recipients: a nationwide population-based cohort study in Korea
por: Kang, Eunjeong, et al.
Publicado: (2022) -
A case of gemcitabine-induced thrombotic microangiopathy in a urothelial tumor patient with a single kidney
por: Ryu, Hyunjin, et al.
Publicado: (2015) -
Acute kidney injury and continuous renal replacement therapy in children; what pediatricians need to know
por: Cho, Myung Hyun, et al.
Publicado: (2018)