Cargando…

Gate-controlled quantum dots and superconductivity in planar germanium

Superconductors and semiconductors are crucial platforms in the field of quantum computing. They can be combined to hybrids, bringing together physical properties that enable the discovery of new emergent phenomena and provide novel strategies for quantum control. The involved semiconductor material...

Descripción completa

Detalles Bibliográficos
Autores principales: Hendrickx, N. W., Franke, D. P., Sammak, A., Kouwenhoven, M., Sabbagh, D., Yeoh, L., Li, R., Tagliaferri, M. L. V., Virgilio, M., Capellini, G., Scappucci, G., Veldhorst, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053419/
https://www.ncbi.nlm.nih.gov/pubmed/30026466
http://dx.doi.org/10.1038/s41467-018-05299-x
_version_ 1783340816923623424
author Hendrickx, N. W.
Franke, D. P.
Sammak, A.
Kouwenhoven, M.
Sabbagh, D.
Yeoh, L.
Li, R.
Tagliaferri, M. L. V.
Virgilio, M.
Capellini, G.
Scappucci, G.
Veldhorst, M.
author_facet Hendrickx, N. W.
Franke, D. P.
Sammak, A.
Kouwenhoven, M.
Sabbagh, D.
Yeoh, L.
Li, R.
Tagliaferri, M. L. V.
Virgilio, M.
Capellini, G.
Scappucci, G.
Veldhorst, M.
author_sort Hendrickx, N. W.
collection PubMed
description Superconductors and semiconductors are crucial platforms in the field of quantum computing. They can be combined to hybrids, bringing together physical properties that enable the discovery of new emergent phenomena and provide novel strategies for quantum control. The involved semiconductor materials, however, suffer from disorder, hyperfine interactions or lack of planar technology. Here we realise an approach that overcomes these issues altogether and integrate gate-defined quantum dots and superconductivity into germanium heterostructures. In our system, heavy holes with mobilities exceeding 500,000 cm(2) (Vs)(−1) are confined in shallow quantum wells that are directly contacted by annealed aluminium leads. We observe proximity-induced superconductivity in the quantum well and demonstrate electric gate-control of the supercurrent. Germanium therefore has great promise for fast and coherent quantum hardware and, being compatible with standard manufacturing, could become a leading material for quantum information processing.
format Online
Article
Text
id pubmed-6053419
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60534192018-07-25 Gate-controlled quantum dots and superconductivity in planar germanium Hendrickx, N. W. Franke, D. P. Sammak, A. Kouwenhoven, M. Sabbagh, D. Yeoh, L. Li, R. Tagliaferri, M. L. V. Virgilio, M. Capellini, G. Scappucci, G. Veldhorst, M. Nat Commun Article Superconductors and semiconductors are crucial platforms in the field of quantum computing. They can be combined to hybrids, bringing together physical properties that enable the discovery of new emergent phenomena and provide novel strategies for quantum control. The involved semiconductor materials, however, suffer from disorder, hyperfine interactions or lack of planar technology. Here we realise an approach that overcomes these issues altogether and integrate gate-defined quantum dots and superconductivity into germanium heterostructures. In our system, heavy holes with mobilities exceeding 500,000 cm(2) (Vs)(−1) are confined in shallow quantum wells that are directly contacted by annealed aluminium leads. We observe proximity-induced superconductivity in the quantum well and demonstrate electric gate-control of the supercurrent. Germanium therefore has great promise for fast and coherent quantum hardware and, being compatible with standard manufacturing, could become a leading material for quantum information processing. Nature Publishing Group UK 2018-07-19 /pmc/articles/PMC6053419/ /pubmed/30026466 http://dx.doi.org/10.1038/s41467-018-05299-x Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Hendrickx, N. W.
Franke, D. P.
Sammak, A.
Kouwenhoven, M.
Sabbagh, D.
Yeoh, L.
Li, R.
Tagliaferri, M. L. V.
Virgilio, M.
Capellini, G.
Scappucci, G.
Veldhorst, M.
Gate-controlled quantum dots and superconductivity in planar germanium
title Gate-controlled quantum dots and superconductivity in planar germanium
title_full Gate-controlled quantum dots and superconductivity in planar germanium
title_fullStr Gate-controlled quantum dots and superconductivity in planar germanium
title_full_unstemmed Gate-controlled quantum dots and superconductivity in planar germanium
title_short Gate-controlled quantum dots and superconductivity in planar germanium
title_sort gate-controlled quantum dots and superconductivity in planar germanium
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053419/
https://www.ncbi.nlm.nih.gov/pubmed/30026466
http://dx.doi.org/10.1038/s41467-018-05299-x
work_keys_str_mv AT hendrickxnw gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT frankedp gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT sammaka gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT kouwenhovenm gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT sabbaghd gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT yeohl gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT lir gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT tagliaferrimlv gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT virgiliom gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT capellinig gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT scappuccig gatecontrolledquantumdotsandsuperconductivityinplanargermanium
AT veldhorstm gatecontrolledquantumdotsandsuperconductivityinplanargermanium