Cargando…

A Poly(ionic liquid) Gel Electrolyte for Efficient all Solid Electrochemical Double-Layer Capacitor

Polyionic liquid based gels have stimulated significant interest due to their wide applications in flexible electronics, such as wearable electronics, roll-up displays, smart mobile devices and implantable biosensors. Novel supported liquid gel electrolyte using polymerisable ionic liquid and an acr...

Descripción completa

Detalles Bibliográficos
Autores principales: Taghavikish, M., Subianto, S., Gu, Y., Sun, X., Zhao, X. S., Choudhury, N. Roy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053427/
https://www.ncbi.nlm.nih.gov/pubmed/30026611
http://dx.doi.org/10.1038/s41598-018-29028-y
Descripción
Sumario:Polyionic liquid based gels have stimulated significant interest due to their wide applications in flexible electronics, such as wearable electronics, roll-up displays, smart mobile devices and implantable biosensors. Novel supported liquid gel electrolyte using polymerisable ionic liquid and an acrylate monomer, has been developed in this work by entrapping ionic liquid during polymerisation instead of post polymerisation impregnation. The chemically crosslinked polyionic liquid gel electrolyte (PIL) is prepared using 2-hydroxyethylmethacrylate (HEMA) monomer and a polymerisable ionic liquid, 1,4-di(vinylimidazolium)butane bisbromide (DVIMBr) in an ionic liquid (IL- 1-butyl-3 methylimidazolium hexafluorophosphate) as the polymerisation solvent, which resulted in in-situ entrapment of the IL in the gel during polymerisation and crosslinking of the polymer. The supported liquid gel electrolyte (SLG) material was characterised with thermal analysis, infrared spectroscopy, and dynamic mechanical analysis, and was found to be stable with good mechanical properties. The electrochemical analysis showed that these chemically cross-linked PIL gel electrolyte-supported ILs are suitable for solid-state, flexible supercapacitor applications.