Cargando…

Metabolic Phenotyping and Strain Characterisation of Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients Using Rapid Evaporative Ionisation Mass Spectrometry

Rapid evaporative ionisation mass spectrometry (REIMS) is a novel technique for the real-time analysis of biological material. It works by conducting an electrical current through a sample, causing it to rapidly heat and evaporate, with the analyte containing vapour channelled to a mass spectrometer...

Descripción completa

Detalles Bibliográficos
Autores principales: Bardin, Emmanuelle E., Cameron, Simon J. S., Perdones-Montero, Alvaro, Hardiman, Kate, Bolt, Frances, Alton, Eric W. F. W., Bush, Andrew, Davies, Jane C., Takáts, Zoltan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053451/
https://www.ncbi.nlm.nih.gov/pubmed/30026575
http://dx.doi.org/10.1038/s41598-018-28665-7
Descripción
Sumario:Rapid evaporative ionisation mass spectrometry (REIMS) is a novel technique for the real-time analysis of biological material. It works by conducting an electrical current through a sample, causing it to rapidly heat and evaporate, with the analyte containing vapour channelled to a mass spectrometer. It was used to characterise the metabolome of 45 Pseudomonas aeruginosa (P. aeruginosa) isolates from cystic fibrosis (CF) patients and compared to 80 non-CF P. aeruginosa. Phospholipids gave the highest signal intensity; 17 rhamnolipids and 18 quorum sensing molecules were detected, demonstrating that REIMS has potential for the study of virulence-related metabolites. P. aeruginosa isolates obtained from respiratory samples showed a higher diversity, which was attributed to the chronic nature of most respiratory infections. The analytical sensitivity of REIMS allowed the detection of a metabolome that could be used to classify individual P. aeruginosa isolates after repeated culturing with 81% accuracy, and an average 83% concordance with multilocus sequence typing. This study underpins the capacities of REIMS as a tool with clinical applications, such as metabolic phenotyping of the important CF pathogen P. aeruginosa, and highlights the potential of metabolic fingerprinting for fine scale characterisation at a sub-species level.