Cargando…

Genomics for Ruminants in Developing Countries: From Principles to Practice

Using genomic information, local ruminant populations can be better characterized and compared to selected ones. Genetic relationships between animals can be established even without systematic pedigree recording, provided a budget is available for genotyping. Genomic selection (GS) can rely on a su...

Descripción completa

Detalles Bibliográficos
Autores principales: Ducrocq, Vincent, Laloe, Denis, Swaminathan, Marimuthu, Rognon, Xavier, Tixier-Boichard, Michèle, Zerjal, Tatiana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053532/
https://www.ncbi.nlm.nih.gov/pubmed/30057590
http://dx.doi.org/10.3389/fgene.2018.00251
Descripción
Sumario:Using genomic information, local ruminant populations can be better characterized and compared to selected ones. Genetic relationships between animals can be established even without systematic pedigree recording, provided a budget is available for genotyping. Genomic selection (GS) can rely on a subset of the total population and does not require a costly national infrastructure, e.g., based on progeny testing. Yet, the use of genomic tools for animal breeding in developing countries is still limited. We identify three main reasons for this: (i) the instruments for cheap recording of phenotypes and data management are still limiting. (ii) many developing countries are recurrently exposed to unfavorable conditions (heat, diseases, poor nutrition) requiring special attention to fitness traits, (iii) a high level of expertise in quantitative genetics, modeling, and data manipulation is needed to perform genomic analyses. Yet, the potential outcomes go much beyond genetic improvements and can improve the resilience of the whole farming system. They include a better management of genetic diversity of local populations, a more balanced genetic progress and the possibility to unravel the genetic basis of adaptation of local breeds through whole genome approaches. A GS program being developed by BAIF, a large Indian NGO, is analyzed as a pilot case. It relies on the creation of a female reference population of Bos indicus and crossbreds, recorded with modern technology (e.g., smartphones) to collect performances at low cost in tiny herds on production and fertility. Finally, recommendations for the implementation of GS in developing countries are proposed.