Cargando…
Impact of ecological redundancy on the performance of machine learning classifiers in vegetation mapping
Vegetation maps are models of the real vegetation patterns and are considered important tools in conservation and management planning. Maps created through traditional methods can be expensive and time‐consuming, thus, new more efficient approaches are needed. The prediction of vegetation patterns u...
Autores principales: | Macintyre, Paul D., Van Niekerk, Adriaan, Dobrowolski, Mark P., Tsakalos, James L., Mucina, Ladislav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053567/ https://www.ncbi.nlm.nih.gov/pubmed/30038769 http://dx.doi.org/10.1002/ece3.4176 |
Ejemplares similares
-
Quantifying the effects of ecological constraints on trait expression using novel trait‐gradient analysis parameters
por: Ottaviani, Gianluigi, et al.
Publicado: (2017) -
Biome: evolution of a crucial ecological and biogeographical concept
por: Mucina, Ladislav
Publicado: (2018) -
Classifying cadmium contaminated leafy vegetables using hyperspectral imaging and machine learning
por: Souza, Augusto, et al.
Publicado: (2022) -
Disentangling vegetation diversity from climate–energy and habitat heterogeneity for explaining animal geographic patterns
por: Jiménez‐Alfaro, Borja, et al.
Publicado: (2016) -
Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia
por: Chilyabanyama, Obvious Nchimunya, et al.
Publicado: (2022)