Cargando…
A Bioconductor workflow for processing and analysing spatial proteomics data
Spatial proteomics is the systematic study of protein sub-cellular localisation. In this workflow, we describe the analysis of a typical quantitative mass spectrometry-based spatial proteomics experiment using the MSnbase and pRoloc Bioconductor package suite. To walk the user through the computatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053703/ https://www.ncbi.nlm.nih.gov/pubmed/30079225 http://dx.doi.org/10.12688/f1000research.10411.2 |
_version_ | 1783340871928774656 |
---|---|
author | Breckels, Lisa M. Mulvey, Claire M. Lilley, Kathryn S. Gatto, Laurent |
author_facet | Breckels, Lisa M. Mulvey, Claire M. Lilley, Kathryn S. Gatto, Laurent |
author_sort | Breckels, Lisa M. |
collection | PubMed |
description | Spatial proteomics is the systematic study of protein sub-cellular localisation. In this workflow, we describe the analysis of a typical quantitative mass spectrometry-based spatial proteomics experiment using the MSnbase and pRoloc Bioconductor package suite. To walk the user through the computational pipeline, we use a recently published experiment predicting protein sub-cellular localisation in pluripotent embryonic mouse stem cells. We describe the software infrastructure at hand, importing and processing data, quality control, sub-cellular marker definition, visualisation and interactive exploration. We then demonstrate the application and interpretation of statistical learning methods, including novelty detection using semi-supervised learning, classification, clustering and transfer learning and conclude the pipeline with data export. The workflow is aimed at beginners who are familiar with proteomics in general and spatial proteomics in particular. |
format | Online Article Text |
id | pubmed-6053703 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-60537032018-08-02 A Bioconductor workflow for processing and analysing spatial proteomics data Breckels, Lisa M. Mulvey, Claire M. Lilley, Kathryn S. Gatto, Laurent F1000Res Software Tool Article Spatial proteomics is the systematic study of protein sub-cellular localisation. In this workflow, we describe the analysis of a typical quantitative mass spectrometry-based spatial proteomics experiment using the MSnbase and pRoloc Bioconductor package suite. To walk the user through the computational pipeline, we use a recently published experiment predicting protein sub-cellular localisation in pluripotent embryonic mouse stem cells. We describe the software infrastructure at hand, importing and processing data, quality control, sub-cellular marker definition, visualisation and interactive exploration. We then demonstrate the application and interpretation of statistical learning methods, including novelty detection using semi-supervised learning, classification, clustering and transfer learning and conclude the pipeline with data export. The workflow is aimed at beginners who are familiar with proteomics in general and spatial proteomics in particular. F1000 Research Limited 2018-07-03 /pmc/articles/PMC6053703/ /pubmed/30079225 http://dx.doi.org/10.12688/f1000research.10411.2 Text en Copyright: © 2018 Breckels LM et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Tool Article Breckels, Lisa M. Mulvey, Claire M. Lilley, Kathryn S. Gatto, Laurent A Bioconductor workflow for processing and analysing spatial proteomics data |
title | A Bioconductor workflow for processing and analysing spatial proteomics data |
title_full | A Bioconductor workflow for processing and analysing spatial proteomics data |
title_fullStr | A Bioconductor workflow for processing and analysing spatial proteomics data |
title_full_unstemmed | A Bioconductor workflow for processing and analysing spatial proteomics data |
title_short | A Bioconductor workflow for processing and analysing spatial proteomics data |
title_sort | bioconductor workflow for processing and analysing spatial proteomics data |
topic | Software Tool Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053703/ https://www.ncbi.nlm.nih.gov/pubmed/30079225 http://dx.doi.org/10.12688/f1000research.10411.2 |
work_keys_str_mv | AT breckelslisam abioconductorworkflowforprocessingandanalysingspatialproteomicsdata AT mulveyclairem abioconductorworkflowforprocessingandanalysingspatialproteomicsdata AT lilleykathryns abioconductorworkflowforprocessingandanalysingspatialproteomicsdata AT gattolaurent abioconductorworkflowforprocessingandanalysingspatialproteomicsdata AT breckelslisam bioconductorworkflowforprocessingandanalysingspatialproteomicsdata AT mulveyclairem bioconductorworkflowforprocessingandanalysingspatialproteomicsdata AT lilleykathryns bioconductorworkflowforprocessingandanalysingspatialproteomicsdata AT gattolaurent bioconductorworkflowforprocessingandanalysingspatialproteomicsdata |