Cargando…
“Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models
There is an intuitive analogy of an organic chemist's understanding of a compound and a language speaker's understanding of a word. Based on this analogy, it is possible to introduce the basic concepts and analyze potential impacts of linguistic analysis to the world of organic chemistry....
Autores principales: | Schwaller, Philippe, Gaudin, Théophile, Lányi, Dávid, Bekas, Costas, Laino, Teodoro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053976/ https://www.ncbi.nlm.nih.gov/pubmed/30090297 http://dx.doi.org/10.1039/c8sc02339e |
Ejemplares similares
-
Molecular Transformer: A Model for Uncertainty-Calibrated
Chemical Reaction Prediction
por: Schwaller, Philippe, et al.
Publicado: (2019) -
Extraction of organic chemistry grammar from unsupervised learning of chemical reactions
por: Schwaller, Philippe, et al.
Publicado: (2021) -
Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy
por: Schwaller, Philippe, et al.
Publicado: (2020) -
Designing catalysts with deep generative models and computational data. A case study for Suzuki cross coupling reactions
por: Schilter, Oliver, et al.
Publicado: (2023) -
Enhancing diversity in language based models for single-step retrosynthesis
por: Toniato, Alessandra, et al.
Publicado: (2023)