Cargando…
Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage
A diversity panel comprising of 296 indica rice genotypes was phenotyped under non-stress and water-deficit stress conditions during the reproductive stage in the 2013 and 2014 dry seasons (DSs) at IRRI, Philippines. We investigated the genotypic variability for grain yield, yield components, and re...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054195/ https://www.ncbi.nlm.nih.gov/pubmed/29767744 http://dx.doi.org/10.1093/jxb/ery186 |
_version_ | 1783340968941977600 |
---|---|
author | Kadam, Niteen N Struik, Paul C Rebolledo, Maria C Yin, Xinyou Jagadish, S V Krishna |
author_facet | Kadam, Niteen N Struik, Paul C Rebolledo, Maria C Yin, Xinyou Jagadish, S V Krishna |
author_sort | Kadam, Niteen N |
collection | PubMed |
description | A diversity panel comprising of 296 indica rice genotypes was phenotyped under non-stress and water-deficit stress conditions during the reproductive stage in the 2013 and 2014 dry seasons (DSs) at IRRI, Philippines. We investigated the genotypic variability for grain yield, yield components, and related traits, and conducted genome-wide association studies (GWAS) using high-density 45K single nucleotide polymorphisms. We detected 38 loci in 2013 and 64 loci in 2014 for non-stress conditions and 69 loci in 2013 and 55 loci in 2014 for water-deficit stress. Desynchronized flowering time confounded grain yield and its components under water-deficit stress in the 2013 experiment. Statistically corrected grain yield and yield component values using days to flowering helped to detect 31 additional genetic loci for grain yield, its components, and the harvest index in 2013. There were few overlaps in the detected loci between years and treatments, and when compared with previous studies using the same panel, indicating the complexity of yield formation under stress. Nevertheless, our analyses provided important insights into the potential links between grain yield with seed set and assimilate partitioning. Our findings demonstrate the complex genetic architecture of yield formation and we propose exploring the genetic basis of less complex component traits as an alternative route for further yield enhancement. |
format | Online Article Text |
id | pubmed-6054195 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-60541952018-07-25 Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage Kadam, Niteen N Struik, Paul C Rebolledo, Maria C Yin, Xinyou Jagadish, S V Krishna J Exp Bot Research Papers A diversity panel comprising of 296 indica rice genotypes was phenotyped under non-stress and water-deficit stress conditions during the reproductive stage in the 2013 and 2014 dry seasons (DSs) at IRRI, Philippines. We investigated the genotypic variability for grain yield, yield components, and related traits, and conducted genome-wide association studies (GWAS) using high-density 45K single nucleotide polymorphisms. We detected 38 loci in 2013 and 64 loci in 2014 for non-stress conditions and 69 loci in 2013 and 55 loci in 2014 for water-deficit stress. Desynchronized flowering time confounded grain yield and its components under water-deficit stress in the 2013 experiment. Statistically corrected grain yield and yield component values using days to flowering helped to detect 31 additional genetic loci for grain yield, its components, and the harvest index in 2013. There were few overlaps in the detected loci between years and treatments, and when compared with previous studies using the same panel, indicating the complexity of yield formation under stress. Nevertheless, our analyses provided important insights into the potential links between grain yield with seed set and assimilate partitioning. Our findings demonstrate the complex genetic architecture of yield formation and we propose exploring the genetic basis of less complex component traits as an alternative route for further yield enhancement. Oxford University Press 2018-07-20 2018-05-15 /pmc/articles/PMC6054195/ /pubmed/29767744 http://dx.doi.org/10.1093/jxb/ery186 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Papers Kadam, Niteen N Struik, Paul C Rebolledo, Maria C Yin, Xinyou Jagadish, S V Krishna Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage |
title | Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage |
title_full | Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage |
title_fullStr | Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage |
title_full_unstemmed | Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage |
title_short | Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage |
title_sort | genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054195/ https://www.ncbi.nlm.nih.gov/pubmed/29767744 http://dx.doi.org/10.1093/jxb/ery186 |
work_keys_str_mv | AT kadamniteenn genomewideassociationrevealsnovelgenomiclocicontrollingricegrainyieldanditscomponenttraitsunderwaterdeficitstressduringthereproductivestage AT struikpaulc genomewideassociationrevealsnovelgenomiclocicontrollingricegrainyieldanditscomponenttraitsunderwaterdeficitstressduringthereproductivestage AT rebolledomariac genomewideassociationrevealsnovelgenomiclocicontrollingricegrainyieldanditscomponenttraitsunderwaterdeficitstressduringthereproductivestage AT yinxinyou genomewideassociationrevealsnovelgenomiclocicontrollingricegrainyieldanditscomponenttraitsunderwaterdeficitstressduringthereproductivestage AT jagadishsvkrishna genomewideassociationrevealsnovelgenomiclocicontrollingricegrainyieldanditscomponenttraitsunderwaterdeficitstressduringthereproductivestage |