Cargando…
Consideration of the usefulness of a size-specific dose estimate in pediatric CT examination
Computed tomography (CT) has recently been utilized in various medical settings, and technological advances have resulted in its widespread use. However, medical radiation exposure associated with CT scans accounts for the largest share of examinations using radiation; thus, it is important to under...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054202/ https://www.ncbi.nlm.nih.gov/pubmed/29659978 http://dx.doi.org/10.1093/jrr/rry022 |
Sumario: | Computed tomography (CT) has recently been utilized in various medical settings, and technological advances have resulted in its widespread use. However, medical radiation exposure associated with CT scans accounts for the largest share of examinations using radiation; thus, it is important to understand the organ dose and effective dose in detail. The CT dose index and dose–length product are used to evaluate the organ dose. However, evaluations using these indicators fail to consider the age and body type of patients. In this study, we evaluated the effective dose based on the CT examination data of 753 patients examined at our hospital using the size-specific dose estimate (SSDE) method, which can calculate the exposure dose with consideration of the physique of a patient. The results showed a large correlation between the SSDE conversion factor and physique, with a larger exposure dose in patients with a small physique when a single scan is considered. Especially for children, the SSDE conversion factor was found to be 2 or more. In addition, the patient exposed to the largest dose in this study was a 10-year-old, who received 40.4 mSv (five series/examination). In the future, for estimating exposure using the SSDE method and in cohort studies, the diagnostic reference level of SSDE should be determined and a low-exposure imaging protocol should be developed to predict the risk of CT exposure and to maintain the quality of diagnosis with better radiation protection of patients. |
---|