Cargando…

Interaction between porous silica gel microcarriers and peptides for oral administration of functional peptides

Functional peptides, peptides that have biological activities, have attracted attention as active ingredients of functional foods and health foods. In particular, for food applications, because orally ingested peptides are degraded by digestive enzymes in the stomach, novel oral administration metho...

Descripción completa

Detalles Bibliográficos
Autores principales: Imai, Kento, Shimizu, Kazunori, Kamimura, Mitsuhiro, Honda, Hiroyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054636/
https://www.ncbi.nlm.nih.gov/pubmed/30030485
http://dx.doi.org/10.1038/s41598-018-29345-2
Descripción
Sumario:Functional peptides, peptides that have biological activities, have attracted attention as active ingredients of functional foods and health foods. In particular, for food applications, because orally ingested peptides are degraded by digestive enzymes in the stomach, novel oral administration methods that can prevent peptide degradation and successfully deliver them intestinally are desired. In the present study, we focused on porous silica gel, which has many useful characteristics, such as large surface area, pH responsive functional groups, size controllable pores, and approval as food additives. We investigated the possibility of using porous silica gel as a peptide degradation protective microcarrier. As a result, we found that heat treatment of the silica gel at 600 °C for 2 h remarkably enhanced the adsorbed amount of many peptides under acidic conditions, and negatively charged and highly hydrophobic peptides had suitable characteristics for oral intestinal delivery with silica gel. Finally, we demonstrated the degree of protection from pepsin degradation and found that the protection of DFELEDD peptide was 57.1 ± 3.9% when DFELEDD was mixed with the heat-treated silica gel. These results indicated that the heat-treated silica gel is promising for efficient oral intestinal delivery of hydrophobic negatively charged peptides.