Cargando…

Anti-inflammatory activity of CKC-containing cationic emulsion eye drop vehicles

PURPOSE: Preservative-free cationic emulsion-based artificial tears (ATs) or drug vehicles are innovative eye drop formulations with tear film stabilization and drug delivery properties, and valuable in vivo anti-inflammatory and wound healing properties. These ATs have recently reached the market a...

Descripción completa

Detalles Bibliográficos
Autores principales: Daull, Philippe, Guenin, Samuel, Hamon de Almeida, Valérie, Garrigue, Jean-Sébastien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054836/
https://www.ncbi.nlm.nih.gov/pubmed/30078983
_version_ 1783341068086935552
author Daull, Philippe
Guenin, Samuel
Hamon de Almeida, Valérie
Garrigue, Jean-Sébastien
author_facet Daull, Philippe
Guenin, Samuel
Hamon de Almeida, Valérie
Garrigue, Jean-Sébastien
author_sort Daull, Philippe
collection PubMed
description PURPOSE: Preservative-free cationic emulsion-based artificial tears (ATs) or drug vehicles are innovative eye drop formulations with tear film stabilization and drug delivery properties, and valuable in vivo anti-inflammatory and wound healing properties. These ATs have recently reached the market as ATs for the management of dry eye disease (DED) symptoms (i.e., Cationorm) or as a drug vehicle for cyclosporine (Ikervis). The aim of the present study was to explore the mechanism of action underlying the intrinsic anti-inflammatory and wound-healing efficacies harbored by the cationic emulsions of cetalkonium chloride (CE-CKC). METHODS: The anti-inflammatory activity of two CE-CKC (0.002% and 0.005% CKC) emulsions was evaluated by assessing the expression of proinflammatory genes and the secretion of various markers in the following human cell types stressed by different agents: peripheral blood mononuclear cells (PBMCs; stimulation with anti-CD3/anti-CD28 or lipopolysaccharide (LPS)), CD4(+) T lymphocytes (TCD4; stimulation with anti-CD3/anti-CD28), and a human corneal epithelial cell line (HCE-2; stimulation with LPS). The cells were incubated for 30 min with a 10% dilution of CE-CKC emulsions and then cultured without the emulsions for 24 h or 72 h in the presence of the various challenging agents. The supernatant was collected, and the secreted markers quantitated with flow cytometry or an enzyme-linked immunosorbent assay (ELISA). Gene expression of inflammatory markers was evaluated only in the PBMCs and HCE-2 cells stimulated with LPS. The in vitro protein kinase C (PKC) binding assay for IC(50) determination was performed using standard procedures. RESULTS: The CE-CKC emulsions decreased inflammatory gene expression in LPS-stimulated PBMCs (IFN-γ, IL-17A, CXCL-9, and TNFα) and LPS-stimulated HCE-2 cells (THBS1 and CCL2). Both CE-CKC emulsions inhibited the secretion of IL-17 (from anti-CD3/anti-CD28-stimulated TCD4), TNFα, IFN-γ, and IL-2 (from anti-CD3-/anti-CD28-stimulated PBMCs), and IL-6 and IL-8 (from LPS-stimulated HCE-2). The in vitro PKC binding assay revealed that CKC, the cationic agent, is a specific PKCα inhibitor. In addition, tyloxapol, another excipient, showed some anti-inflammatory activity on IL-6 and IL-8 in the LPS-stimulated HCE-2 cells. CONCLUSIONS: This study indicates that the CE-CKC emulsions are able to directly modulate the secretion and expression of proinflammatory cytokines and chemokines. The results also suggest that CKC and tyloxapol are pharmacologically active excipients with potentially beneficial effects in vivo. These data shed new light on the efficacy observed on the DED signs of these CE-CKC emulsions in clinical trials.
format Online
Article
Text
id pubmed-6054836
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Molecular Vision
record_format MEDLINE/PubMed
spelling pubmed-60548362018-08-03 Anti-inflammatory activity of CKC-containing cationic emulsion eye drop vehicles Daull, Philippe Guenin, Samuel Hamon de Almeida, Valérie Garrigue, Jean-Sébastien Mol Vis Research Article PURPOSE: Preservative-free cationic emulsion-based artificial tears (ATs) or drug vehicles are innovative eye drop formulations with tear film stabilization and drug delivery properties, and valuable in vivo anti-inflammatory and wound healing properties. These ATs have recently reached the market as ATs for the management of dry eye disease (DED) symptoms (i.e., Cationorm) or as a drug vehicle for cyclosporine (Ikervis). The aim of the present study was to explore the mechanism of action underlying the intrinsic anti-inflammatory and wound-healing efficacies harbored by the cationic emulsions of cetalkonium chloride (CE-CKC). METHODS: The anti-inflammatory activity of two CE-CKC (0.002% and 0.005% CKC) emulsions was evaluated by assessing the expression of proinflammatory genes and the secretion of various markers in the following human cell types stressed by different agents: peripheral blood mononuclear cells (PBMCs; stimulation with anti-CD3/anti-CD28 or lipopolysaccharide (LPS)), CD4(+) T lymphocytes (TCD4; stimulation with anti-CD3/anti-CD28), and a human corneal epithelial cell line (HCE-2; stimulation with LPS). The cells were incubated for 30 min with a 10% dilution of CE-CKC emulsions and then cultured without the emulsions for 24 h or 72 h in the presence of the various challenging agents. The supernatant was collected, and the secreted markers quantitated with flow cytometry or an enzyme-linked immunosorbent assay (ELISA). Gene expression of inflammatory markers was evaluated only in the PBMCs and HCE-2 cells stimulated with LPS. The in vitro protein kinase C (PKC) binding assay for IC(50) determination was performed using standard procedures. RESULTS: The CE-CKC emulsions decreased inflammatory gene expression in LPS-stimulated PBMCs (IFN-γ, IL-17A, CXCL-9, and TNFα) and LPS-stimulated HCE-2 cells (THBS1 and CCL2). Both CE-CKC emulsions inhibited the secretion of IL-17 (from anti-CD3/anti-CD28-stimulated TCD4), TNFα, IFN-γ, and IL-2 (from anti-CD3-/anti-CD28-stimulated PBMCs), and IL-6 and IL-8 (from LPS-stimulated HCE-2). The in vitro PKC binding assay revealed that CKC, the cationic agent, is a specific PKCα inhibitor. In addition, tyloxapol, another excipient, showed some anti-inflammatory activity on IL-6 and IL-8 in the LPS-stimulated HCE-2 cells. CONCLUSIONS: This study indicates that the CE-CKC emulsions are able to directly modulate the secretion and expression of proinflammatory cytokines and chemokines. The results also suggest that CKC and tyloxapol are pharmacologically active excipients with potentially beneficial effects in vivo. These data shed new light on the efficacy observed on the DED signs of these CE-CKC emulsions in clinical trials. Molecular Vision 2018-07-20 /pmc/articles/PMC6054836/ /pubmed/30078983 Text en Copyright © 2018 Molecular Vision. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited, used for non-commercial purposes, and is not altered or transformed.
spellingShingle Research Article
Daull, Philippe
Guenin, Samuel
Hamon de Almeida, Valérie
Garrigue, Jean-Sébastien
Anti-inflammatory activity of CKC-containing cationic emulsion eye drop vehicles
title Anti-inflammatory activity of CKC-containing cationic emulsion eye drop vehicles
title_full Anti-inflammatory activity of CKC-containing cationic emulsion eye drop vehicles
title_fullStr Anti-inflammatory activity of CKC-containing cationic emulsion eye drop vehicles
title_full_unstemmed Anti-inflammatory activity of CKC-containing cationic emulsion eye drop vehicles
title_short Anti-inflammatory activity of CKC-containing cationic emulsion eye drop vehicles
title_sort anti-inflammatory activity of ckc-containing cationic emulsion eye drop vehicles
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054836/
https://www.ncbi.nlm.nih.gov/pubmed/30078983
work_keys_str_mv AT daullphilippe antiinflammatoryactivityofckccontainingcationicemulsioneyedropvehicles
AT gueninsamuel antiinflammatoryactivityofckccontainingcationicemulsioneyedropvehicles
AT hamondealmeidavalerie antiinflammatoryactivityofckccontainingcationicemulsioneyedropvehicles
AT garriguejeansebastien antiinflammatoryactivityofckccontainingcationicemulsioneyedropvehicles