Cargando…
Multi-Timescale Memory Dynamics Extend Task Repertoire in a Reinforcement Learning Network With Attention-Gated Memory
The interplay of reinforcement learning and memory is at the core of several recent neural network models, such as the Attention-Gated MEmory Tagging (AuGMEnT) model. While successful at various animal learning tasks, we find that the AuGMEnT network is unable to cope with some hierarchical tasks, w...
Autores principales: | Martinolli, Marco, Gerstner, Wulfram, Gilra, Aditya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6055065/ https://www.ncbi.nlm.nih.gov/pubmed/30061819 http://dx.doi.org/10.3389/fncom.2018.00050 |
Ejemplares similares
-
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network
por: Gilra, Aditya, et al.
Publicado: (2017) -
The neuronal response at extended timescales: long-term correlations without long-term memory
por: Soudry, Daniel, et al.
Publicado: (2014) -
Hebbian plasticity requires compensatory processes on multiple timescales
por: Zenke, Friedemann, et al.
Publicado: (2017) -
Heads for learning, tails for memory: reward, reinforcement and a role of dopamine in determining behavioral relevance across multiple timescales
por: Baudonnat, Mathieu, et al.
Publicado: (2013) -
Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats
por: Lloyd, Kevin, et al.
Publicado: (2012)