Cargando…
Protective effect of miR378* on doxorubicin‐induced cardiomyocyte injury via calumenin
Doxorubicin (Dox) is a highly effective antitumor antibiotic, however myocardial toxicity severely limits its use clinically. The pathogenesis of doxorubicin‐induced cardiomyopathy is unclear. In Dox cardiomyopathy mice, there is a decline in cardiac function, a change in myocardial pathology and a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6055600/ https://www.ncbi.nlm.nih.gov/pubmed/29665007 http://dx.doi.org/10.1002/jcp.26615 |
Sumario: | Doxorubicin (Dox) is a highly effective antitumor antibiotic, however myocardial toxicity severely limits its use clinically. The pathogenesis of doxorubicin‐induced cardiomyopathy is unclear. In Dox cardiomyopathy mice, there is a decline in cardiac function, a change in myocardial pathology and a reduction in miR378* expression. Expression changes in calumenin, an endoplasmic reticulum stress (ERS) chaperone protein and pathway factor, as well as apoptosis, were observed in cardiomyocytes after doxorubicin‐induced injury. However, miR378* increased calumenin expression, eased ERS, and reduced cardiomyocyte apoptosis, while, silencing miR378* reduced calumenin expression, aggravated ERS, and increased cardiomyocyte apoptosis. The above results indicate that miR378* alleviates ERS and inhibits the activation of the ERS‐mediated apoptosis signaling pathway in cardiomyocytes via regulating calumenin expression, thereby reducing cardiomyocyte apoptosis after doxorubicin‐induced injury. Increasing miR378* expression may be a new way to improve cardiac function and quality of life in patients with Dox cardiomyopathy. |
---|