Cargando…

Peak visual gamma frequency is modified across the healthy menstrual cycle

Fluctuations in gonadal hormones over the course of the menstrual cycle are known to cause functional brain changes and are thought to modulate changes in the balance of cortical excitation and inhibition. Animal research has shown this occurs primarily via the major metabolite of progesterone, allo...

Descripción completa

Detalles Bibliográficos
Autores principales: Sumner, Rachael L., McMillan, Rebecca L., Shaw, Alexander D., Singh, Krish D., Sundram, Fred, Muthukumaraswamy, Suresh D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6055613/
https://www.ncbi.nlm.nih.gov/pubmed/29665216
http://dx.doi.org/10.1002/hbm.24069
Descripción
Sumario:Fluctuations in gonadal hormones over the course of the menstrual cycle are known to cause functional brain changes and are thought to modulate changes in the balance of cortical excitation and inhibition. Animal research has shown this occurs primarily via the major metabolite of progesterone, allopregnanolone, and its action as a positive allosteric modulator of the GABA(A) receptor. Our study used EEG to record gamma oscillations induced in the visual cortex using stationary and moving gratings. Recordings took place during twenty females’ mid‐luteal phase when progesterone and estradiol are highest, and early follicular phase when progesterone and estradiol are lowest. Significantly higher (∼5 Hz) gamma frequency was recorded during the luteal compared to the follicular phase for both stimuli types. Using dynamic causal modeling, these changes were linked to stronger self‐inhibition of superficial pyramidal cells in the luteal compared to the follicular phase. In addition, the connection from inhibitory interneurons to deep pyramidal cells was found to be stronger in the follicular compared to the luteal phase. These findings show that complex functional changes in synaptic microcircuitry occur across the menstrual cycle and that menstrual cycle phase should be taken into consideration when including female participants in research into gamma‐band oscillations.