Cargando…
Investigation of epigenetic regulatory networks associated with autism spectrum disorder (ASD) by integrated global LINE-1 methylation and gene expression profiling analyses
BACKGROUND: The exact cause and mechanisms underlying the pathobiology of autism spectrum disorder (ASD) remain unclear. Dysregulation of long interspersed element-1 (LINE-1) has been reported in the brains of ASD-like mutant mice and ASD brain tissues. However, the role and methylation of LINE-1 in...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056057/ https://www.ncbi.nlm.nih.gov/pubmed/30036398 http://dx.doi.org/10.1371/journal.pone.0201071 |
Sumario: | BACKGROUND: The exact cause and mechanisms underlying the pathobiology of autism spectrum disorder (ASD) remain unclear. Dysregulation of long interspersed element-1 (LINE-1) has been reported in the brains of ASD-like mutant mice and ASD brain tissues. However, the role and methylation of LINE-1 in individuals with ASD remain unclear. In this study, we aimed to investigate whether LINE-1 insertion is associated with differentially expressed genes (DEGs) and to assess LINE-1 methylation in ASD. METHODS: To identify DEGs associated with LINE-1 in ASD, we reanalyzed previously published transcriptome profiles and overlapped them with the list of LINE-1-containing genes from the TranspoGene database. An Ingenuity Pathway Analysis (IPA) of DEGs associated with LINE-1 insertion was conducted. DNA methylation of LINE-1 was assessed via combined bisulfite restriction analysis (COBRA) of lymphoblastoid cell lines from ASD individuals and unaffected individuals, and the methylation levels were correlated with the expression levels of LINE-1 and two LINE-1-inserted DEGs, C1orf27 and ARMC8. RESULTS: We found that LINE-1 insertion was significantly associated with DEGs in ASD. The IPA showed that LINE-1-inserted DEGs were associated with ASD-related mechanisms, including sex hormone receptor signaling and axon guidance signaling. Moreover, we observed that the LINE-1 methylation level was significantly reduced in lymphoblastoid cell lines from ASD individuals with severe language impairment and was inversely correlated with the transcript level. The methylation level of LINE-1 was also correlated with the expression of the LINE-1-inserted DEG C1orf27 but not ARMC8. CONCLUSIONS: In ASD individuals with severe language impairment, LINE-1 methylation was reduced and correlated with the expression levels of LINE-1 and the LINE-1-inserted DEG C1orf27. Our findings highlight the association of LINE-1 with DEGs in ASD blood samples and warrant further investigation. The molecular mechanisms of LINE-1 and the effects of its methylation in ASD pathobiology deserve further study. |
---|