Cargando…

Vineyard under-vine floor management alters soil microbial composition, while the fruit microbiome shows no corresponding shifts

The microbiome of a vineyard may play a critical role in fruit development, and consequently, may impact quality properties of grape and wine. Vineyard management approaches that have directly manipulated the microbiome of grape clusters have been studied, but little is known about how vineyard mana...

Descripción completa

Detalles Bibliográficos
Autores principales: Chou, Ming-Yi, Vanden Heuvel, Justine, Bell, Terrence H., Panke-Buisse, Kevin, Kao-Kniffin, Jenny
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056419/
https://www.ncbi.nlm.nih.gov/pubmed/30038291
http://dx.doi.org/10.1038/s41598-018-29346-1
Descripción
Sumario:The microbiome of a vineyard may play a critical role in fruit development, and consequently, may impact quality properties of grape and wine. Vineyard management approaches that have directly manipulated the microbiome of grape clusters have been studied, but little is known about how vineyard management practices that impact the soil microbial pool can influence this dynamic. We examined three under-vine soil management practices: 1) herbicide application, 2) soil cultivation (vegetation removal), and 3) natural vegetation (no vegetation removal) in a Riesling vineyard in New York over a three-year period. The microbiomes associated with soil and grapes were profiled using high-throughput sequencing of the bacterial 16 S rRNA gene and fungal ITS regions. Our results showed that soil bacterial composition under natural vegetation differs from that seen in glyphosate-maintained bare soil. Soil fungal composition under the natural vegetation treatment was distinct from other treatments. Although our study revealed soil microbiome shifts based on under-vine management, there were no corresponding changes in fruit-associated microbial composition. These results suggested that other vineyard management practices or environmental factors are more influential in shaping the grape-associated microbiome.