Cargando…

Response Modality vs. Target Modality: Sensory Transformations and Comparisons in Cross-modal Slant Matching Tasks

Humans constantly combine multi-sensory spatial information to successfully interact with objects in peripersonal space. Previous studies suggest that sensory inputs of different modalities are encoded in different reference frames. In cross-modal tasks where the target and response modalities are d...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Juan, Ando, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056512/
https://www.ncbi.nlm.nih.gov/pubmed/30038316
http://dx.doi.org/10.1038/s41598-018-29375-w
Descripción
Sumario:Humans constantly combine multi-sensory spatial information to successfully interact with objects in peripersonal space. Previous studies suggest that sensory inputs of different modalities are encoded in different reference frames. In cross-modal tasks where the target and response modalities are different, it is unclear which reference frame these multiple sensory signals are transformed to for comparison. The current study used a slant perception and parallelity paradigm to explore this issue. Participants perceived (either visually or haptically) the slant of a reference board and were asked to either adjust an invisible test board by hand manipulation or to adjust a visible test board through verbal instructions to be physically parallel to the reference board. We examined the patterns of constant error and variability of unimodal and cross-modal tasks with various reference slant angles at different reference/test locations. The results revealed that rather than a mixture of the patterns of unimodal conditions, the pattern in cross-modal conditions depended almost entirely on the response modality and was not substantially affected by the target modality. Deviations in haptic response conditions could be predicted by the locations of the reference and test board, whereas the reference slant angle was an important predictor in visual response conditions.