Cargando…
Public Perception Analysis of Tweets During the 2015 Measles Outbreak: Comparative Study Using Convolutional Neural Network Models
BACKGROUND: Timely understanding of public perceptions allows public health agencies to provide up-to-date responses to health crises such as infectious diseases outbreaks. Social media such as Twitter provide an unprecedented way for the prompt assessment of the large-scale public response. OBJECTI...
Autores principales: | Du, Jingcheng, Tang, Lu, Xiang, Yang, Zhi, Degui, Xu, Jun, Song, Hsing-Yi, Tao, Cui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056740/ https://www.ncbi.nlm.nih.gov/pubmed/29986843 http://dx.doi.org/10.2196/jmir.9413 |
Ejemplares similares
-
Tweeting about measles during stages of an outbreak: A semantic network approach to the framing of an emerging infectious disease
por: Tang, Lu, et al.
Publicado: (2018) -
Disease Detection or Public Opinion Reflection? Content Analysis of Tweets, Other Social Media, and Online Newspapers During the Measles Outbreak in the Netherlands in 2013
por: Mollema, Liesbeth, et al.
Publicado: (2015) -
Word2vec convolutional neural networks for classification of news articles and tweets
por: Jang, Beakcheol, et al.
Publicado: (2019) -
Measles Outbreak in Pediatric Hematology and Oncology Patients in Shanghai, 2015
por: Ge, Yan-Ling, et al.
Publicado: (2017) -
Texas Public Agencies’ Tweets and Public Engagement During the COVID-19 Pandemic: Natural Language Processing Approach
por: Tang, Lu, et al.
Publicado: (2021)