Cargando…
Unsupervised Machine Learning to Identify High Likelihood of Dementia in Population-Based Surveys: Development and Validation Study
BACKGROUND: Dementia is increasing in prevalence worldwide, yet frequently remains undiagnosed, especially in low- and middle-income countries. Population-based surveys represent an underinvestigated source to identify individuals at risk of dementia. OBJECTIVE: The aim is to identify participants w...
Autores principales: | Cleret de Langavant, Laurent, Bayen, Eleonore, Yaffe, Kristine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056741/ https://www.ncbi.nlm.nih.gov/pubmed/29986849 http://dx.doi.org/10.2196/10493 |
Ejemplares similares
-
Approximating dementia prevalence in population‐based surveys of aging worldwide: An unsupervised machine learning approach
por: Cleret de Langavant, Laurent, et al.
Publicado: (2020) -
Identification of high likelihood of dementia in population-based surveys using unsupervised clustering: a longitudinal analysis
por: Gharbi-Meliani, Amin, et al.
Publicado: (2023) -
Identification of High Likelihood of Dementia in Population-Based Surveys using Unsupervised Clustering: a Longitudinal Analysis
por: Gharbi-Meliani, Amin, et al.
Publicado: (2023) -
Unsupervised Machine Learning to Identify Depressive Subtypes
por: Kung, Benson, et al.
Publicado: (2022) -
Unsupervised Machine Learning to Identify Separable Clinical Alzheimer’s Disease Sub-Populations
por: Prakash, Jayant, et al.
Publicado: (2021)