Cargando…
Electronic Health Literacy Across the Lifespan: Measurement Invariance Study
BACKGROUND: Electronic health (eHealth) information is ingrained in the healthcare experience to engage patients across the lifespan. Both eHealth accessibility and optimization are influenced by lifespan development, as older adults experience greater challenges accessing and using eHealth tools as...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056742/ https://www.ncbi.nlm.nih.gov/pubmed/29986848 http://dx.doi.org/10.2196/10434 |
Sumario: | BACKGROUND: Electronic health (eHealth) information is ingrained in the healthcare experience to engage patients across the lifespan. Both eHealth accessibility and optimization are influenced by lifespan development, as older adults experience greater challenges accessing and using eHealth tools as compared to their younger counterparts. The eHealth Literacy Scale (eHEALS) is the most popular measure used to assess patient confidence locating, understanding, evaluating, and acting upon online health information. Currently, however, the factor structure of the eHEALS across discrete age groups is not well understood, which limits its usefulness as a measure of eHealth literacy across the lifespan. OBJECTIVE: The purpose of this study was to examine the structure of eHEALS scores and the degree of measurement invariance among US adults representing the following generations: Millennials (18-35-year-olds), Generation X (36-51-year-olds), Baby Boomers (52-70-year-olds), and the Silent Generation (71-84-year-olds). METHODS: Millennials (N=281, mean 26.64 years, SD 5.14), Generation X (N=164, mean 42.97 years, SD 5.01), and Baby Boomers/Silent Generation (N=384, mean 62.80 years, SD 6.66) members completed the eHEALS. The 3-factor (root mean square error of approximation, RMSEA=.06, comparative fit index, CFI=.99, Tucker-Lewis index, TLI=.98) and 4-factor (RMSEA=.06, CFI=.99, TLI=.98) models showed the best global fit, as compared to the 1- and 2-factor models. However, the 4-factor model did not have statistically significant factor loadings on the 4th factor, which led to the acceptance of the 3-factor eHEALS model. The 3-factor model included eHealth Information Awareness, Search, and Engagement. Pattern invariance for this 3-factor structure was supported with acceptable model fit (RMSEA=.07, Δχ(2)=P>.05, ΔCFI=0). Compared to Millennials and members of Generation X, those in the Baby Boomer and Silent Generations reported less confidence in their awareness of eHealth resources (P<.001), information seeking skills (P=.003), and ability to evaluate and act on health information found on the Internet (P<.001). RESULTS: Young (18-48-year olds, N=411) and old (49-84-year olds, N=419) adults completed the survey. A 3-factor model had the best fit (RMSEA=.06, CFI=.99, TLI=.98), as compared to the 1-factor, 2-factor, and 4-factor models. These 3-factors included eHealth Information Awareness (2 items), Information Seeking (2 items), and Information and Evaluation (4 items). Pattern invariance was supported with the acceptable model fit (RMSEA=.06, Δχ(2)=P>.05, ΔCFI=0). Compared with younger adults, older adults had less confidence in eHealth resource awareness (P<.001), information seeking skills (P<.01), and ability to evaluate and act upon online health information (P<.001). CONCLUSIONS: The eHEALS can be used to assess, monitor uniquely, and evaluate Internet users’ awareness of eHealth resources, information seeking skills, and engagement abilities. Configural and pattern invariance was observed across all generation groups in the 3-factor eHEALS model. To meet gold the standards for factor interpretation (ie, 3 items or indicators per factor), future research is needed to create and assess additional eHEALS items. Future research is also necessary to identify and test items for a fourth factor, one that captures the social nature of eHealth. |
---|