Cargando…

Electronic Health Literacy Across the Lifespan: Measurement Invariance Study

BACKGROUND: Electronic health (eHealth) information is ingrained in the healthcare experience to engage patients across the lifespan. Both eHealth accessibility and optimization are influenced by lifespan development, as older adults experience greater challenges accessing and using eHealth tools as...

Descripción completa

Detalles Bibliográficos
Autores principales: Paige, Samantha R, Miller, M David, Krieger, Janice L, Stellefson, Michael, Cheong, JeeWon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056742/
https://www.ncbi.nlm.nih.gov/pubmed/29986848
http://dx.doi.org/10.2196/10434
_version_ 1783341396716945408
author Paige, Samantha R
Miller, M David
Krieger, Janice L
Stellefson, Michael
Cheong, JeeWon
author_facet Paige, Samantha R
Miller, M David
Krieger, Janice L
Stellefson, Michael
Cheong, JeeWon
author_sort Paige, Samantha R
collection PubMed
description BACKGROUND: Electronic health (eHealth) information is ingrained in the healthcare experience to engage patients across the lifespan. Both eHealth accessibility and optimization are influenced by lifespan development, as older adults experience greater challenges accessing and using eHealth tools as compared to their younger counterparts. The eHealth Literacy Scale (eHEALS) is the most popular measure used to assess patient confidence locating, understanding, evaluating, and acting upon online health information. Currently, however, the factor structure of the eHEALS across discrete age groups is not well understood, which limits its usefulness as a measure of eHealth literacy across the lifespan. OBJECTIVE: The purpose of this study was to examine the structure of eHEALS scores and the degree of measurement invariance among US adults representing the following generations: Millennials (18-35-year-olds), Generation X (36-51-year-olds), Baby Boomers (52-70-year-olds), and the Silent Generation (71-84-year-olds). METHODS: Millennials (N=281, mean 26.64 years, SD 5.14), Generation X (N=164, mean 42.97 years, SD 5.01), and Baby Boomers/Silent Generation (N=384, mean 62.80 years, SD 6.66) members completed the eHEALS. The 3-factor (root mean square error of approximation, RMSEA=.06, comparative fit index, CFI=.99, Tucker-Lewis index, TLI=.98) and 4-factor (RMSEA=.06, CFI=.99, TLI=.98) models showed the best global fit, as compared to the 1- and 2-factor models. However, the 4-factor model did not have statistically significant factor loadings on the 4th factor, which led to the acceptance of the 3-factor eHEALS model. The 3-factor model included eHealth Information Awareness, Search, and Engagement. Pattern invariance for this 3-factor structure was supported with acceptable model fit (RMSEA=.07, Δχ(2)=P>.05, ΔCFI=0). Compared to Millennials and members of Generation X, those in the Baby Boomer and Silent Generations reported less confidence in their awareness of eHealth resources (P<.001), information seeking skills (P=.003), and ability to evaluate and act on health information found on the Internet (P<.001). RESULTS: Young (18-48-year olds, N=411) and old (49-84-year olds, N=419) adults completed the survey. A 3-factor model had the best fit (RMSEA=.06, CFI=.99, TLI=.98), as compared to the 1-factor, 2-factor, and 4-factor models. These 3-factors included eHealth Information Awareness (2 items), Information Seeking (2 items), and Information and Evaluation (4 items). Pattern invariance was supported with the acceptable model fit (RMSEA=.06, Δχ(2)=P>.05, ΔCFI=0). Compared with younger adults, older adults had less confidence in eHealth resource awareness (P<.001), information seeking skills (P<.01), and ability to evaluate and act upon online health information (P<.001). CONCLUSIONS: The eHEALS can be used to assess, monitor uniquely, and evaluate Internet users’ awareness of eHealth resources, information seeking skills, and engagement abilities. Configural and pattern invariance was observed across all generation groups in the 3-factor eHEALS model. To meet gold the standards for factor interpretation (ie, 3 items or indicators per factor), future research is needed to create and assess additional eHEALS items. Future research is also necessary to identify and test items for a fourth factor, one that captures the social nature of eHealth.
format Online
Article
Text
id pubmed-6056742
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-60567422018-07-27 Electronic Health Literacy Across the Lifespan: Measurement Invariance Study Paige, Samantha R Miller, M David Krieger, Janice L Stellefson, Michael Cheong, JeeWon J Med Internet Res Original Paper BACKGROUND: Electronic health (eHealth) information is ingrained in the healthcare experience to engage patients across the lifespan. Both eHealth accessibility and optimization are influenced by lifespan development, as older adults experience greater challenges accessing and using eHealth tools as compared to their younger counterparts. The eHealth Literacy Scale (eHEALS) is the most popular measure used to assess patient confidence locating, understanding, evaluating, and acting upon online health information. Currently, however, the factor structure of the eHEALS across discrete age groups is not well understood, which limits its usefulness as a measure of eHealth literacy across the lifespan. OBJECTIVE: The purpose of this study was to examine the structure of eHEALS scores and the degree of measurement invariance among US adults representing the following generations: Millennials (18-35-year-olds), Generation X (36-51-year-olds), Baby Boomers (52-70-year-olds), and the Silent Generation (71-84-year-olds). METHODS: Millennials (N=281, mean 26.64 years, SD 5.14), Generation X (N=164, mean 42.97 years, SD 5.01), and Baby Boomers/Silent Generation (N=384, mean 62.80 years, SD 6.66) members completed the eHEALS. The 3-factor (root mean square error of approximation, RMSEA=.06, comparative fit index, CFI=.99, Tucker-Lewis index, TLI=.98) and 4-factor (RMSEA=.06, CFI=.99, TLI=.98) models showed the best global fit, as compared to the 1- and 2-factor models. However, the 4-factor model did not have statistically significant factor loadings on the 4th factor, which led to the acceptance of the 3-factor eHEALS model. The 3-factor model included eHealth Information Awareness, Search, and Engagement. Pattern invariance for this 3-factor structure was supported with acceptable model fit (RMSEA=.07, Δχ(2)=P>.05, ΔCFI=0). Compared to Millennials and members of Generation X, those in the Baby Boomer and Silent Generations reported less confidence in their awareness of eHealth resources (P<.001), information seeking skills (P=.003), and ability to evaluate and act on health information found on the Internet (P<.001). RESULTS: Young (18-48-year olds, N=411) and old (49-84-year olds, N=419) adults completed the survey. A 3-factor model had the best fit (RMSEA=.06, CFI=.99, TLI=.98), as compared to the 1-factor, 2-factor, and 4-factor models. These 3-factors included eHealth Information Awareness (2 items), Information Seeking (2 items), and Information and Evaluation (4 items). Pattern invariance was supported with the acceptable model fit (RMSEA=.06, Δχ(2)=P>.05, ΔCFI=0). Compared with younger adults, older adults had less confidence in eHealth resource awareness (P<.001), information seeking skills (P<.01), and ability to evaluate and act upon online health information (P<.001). CONCLUSIONS: The eHEALS can be used to assess, monitor uniquely, and evaluate Internet users’ awareness of eHealth resources, information seeking skills, and engagement abilities. Configural and pattern invariance was observed across all generation groups in the 3-factor eHEALS model. To meet gold the standards for factor interpretation (ie, 3 items or indicators per factor), future research is needed to create and assess additional eHEALS items. Future research is also necessary to identify and test items for a fourth factor, one that captures the social nature of eHealth. JMIR Publications 2018-07-09 /pmc/articles/PMC6056742/ /pubmed/29986848 http://dx.doi.org/10.2196/10434 Text en ©Samantha R Paige, M David Miller, Janice L Krieger, Michael Stellefson, JeeWon Cheong. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 09.07.2018. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Paige, Samantha R
Miller, M David
Krieger, Janice L
Stellefson, Michael
Cheong, JeeWon
Electronic Health Literacy Across the Lifespan: Measurement Invariance Study
title Electronic Health Literacy Across the Lifespan: Measurement Invariance Study
title_full Electronic Health Literacy Across the Lifespan: Measurement Invariance Study
title_fullStr Electronic Health Literacy Across the Lifespan: Measurement Invariance Study
title_full_unstemmed Electronic Health Literacy Across the Lifespan: Measurement Invariance Study
title_short Electronic Health Literacy Across the Lifespan: Measurement Invariance Study
title_sort electronic health literacy across the lifespan: measurement invariance study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056742/
https://www.ncbi.nlm.nih.gov/pubmed/29986848
http://dx.doi.org/10.2196/10434
work_keys_str_mv AT paigesamanthar electronichealthliteracyacrossthelifespanmeasurementinvariancestudy
AT millermdavid electronichealthliteracyacrossthelifespanmeasurementinvariancestudy
AT kriegerjanicel electronichealthliteracyacrossthelifespanmeasurementinvariancestudy
AT stellefsonmichael electronichealthliteracyacrossthelifespanmeasurementinvariancestudy
AT cheongjeewon electronichealthliteracyacrossthelifespanmeasurementinvariancestudy