Cargando…
Novel PLP1 Mutations Identified With Next-Generation Sequencing Expand the Spectrum of PLP1-Associated Leukodystrophy Clinical Phenotypes
Next-generation sequencing was performed for 2 families with an undiagnosed neurologic disease. Analysis revealed X-linked mutations in the proteolipid protein 1 (PLP1) gene, which is associated with X-linked Pelizaeus-Merzbacher disease and Spastic Paraplegia type 2. In family A, the novel PLP1 mis...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056774/ https://www.ncbi.nlm.nih.gov/pubmed/30046645 http://dx.doi.org/10.1177/2329048X18789282 |
Sumario: | Next-generation sequencing was performed for 2 families with an undiagnosed neurologic disease. Analysis revealed X-linked mutations in the proteolipid protein 1 (PLP1) gene, which is associated with X-linked Pelizaeus-Merzbacher disease and Spastic Paraplegia type 2. In family A, the novel PLP1 missense mutation c.617T>A (p.M206K) was hemizygous in the 2 affected male children and heterozygous in the mother. In family B, the novel de novo PLP1 frameshift mutation c.359_369del (p.G120fs) was hemizygous in the affected male child. Although PLP1 mutations have been reported to cause an increasingly wide range of phenotypes inclusive of the dystonia, spastic paraparesis, motor neuronopathy, and leukodystrophy observed in our patients, atypical features included the cerebrospinal fluid deficiency of neurotransmitter and pterin metabolites and the delayed appearance of myelin abnormalities on neuroimaging studies. Next-generation sequencing studies provided a diagnosis for these families with complex leukodystrophy disease phenotypes, which expanded the spectrum of PLP1-associated leukodystrophy clinical phenotypes. |
---|