Cargando…

Development of an enterprise risk inventory for healthcare

BACKGROUND: The first phase of an enterprise risk management (ERM) program is the identification of risks. Accurate identification is essential to a proactive and effective ERM function. The authors identified a lack of such risk identification in the literature and in practical cases when interview...

Descripción completa

Detalles Bibliográficos
Autores principales: Etges, Ana Paula Beck da Silva, Grenon, Veronique, Lu, Ming, Cardoso, Ricardo Bertoglio, de Souza, Joana Siqueira, Kliemann Neto, Francisco José, Felix, Elaine Aparecida
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057062/
https://www.ncbi.nlm.nih.gov/pubmed/30041651
http://dx.doi.org/10.1186/s12913-018-3400-7
Descripción
Sumario:BACKGROUND: The first phase of an enterprise risk management (ERM) program is the identification of risks. Accurate identification is essential to a proactive and effective ERM function. The authors identified a lack of such risk identification in the literature and in practical cases when interviewing the chief risk officers from healthcare organizations. A risk inventory specific to healthcare organizations that includes detailed risk scenarios and risk impacts currently does not exist. Thus, the objective of this research is to develop an enterprise risk inventory for healthcare organizations to create a common understanding of how each type of risk impacts a healthcare organization. METHOD: ERM guidelines and data from 15 interviews with chief risk officers were analyzed to create the risk inventory. The identified risks were confirmed through a survey of risk managers from a range of global healthcare organizations during the ASHRM conference in 2017. Descriptive statistics were developed and cluster analysis was performed using the survey results. RESULTS: The risk inventory includes 28 risks and their specific risk scenarios. Cyberattack was ranked as the principal risk by the participants, followed by sentinel events and risks associated with human capital management (organizational culture, use of electronic medical records and physician wellness). The data analysis showed that the specific characteristics of the survey participants, such as the length of time working in risk management, the size of the organization, and the presence of a school of medicine, do not impact an individual’s opinion of the importance of the risks identified. A personal background in risk management (clinical or enterprise) was a characteristic that showed a small difference in the perceived importance of the risks from the proposed risk inventory. CONCLUSIONS: In addition to defining specific risk scenarios, the enterprise risk inventory presented in this research can contribute to guiding the risk identification phase of an ERM program and thereby support the development of a risk culture. Patient data security in hospitals that operate with high levels of technology is fundamental to delivering high quality and safe care to patients. At the top of the risk ranking, the identification of cyberattacks reflects the importance that healthcare risk managers place on this risk by allocating time and other resources. Exploring opportunities to improve cyber risk management and evaluating the benefits of using the risk inventory at the beginning of the risk identification phase in an ERM program are suggestions for future studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12913-018-3400-7) contains supplementary material, which is available to authorized users.