Cargando…
NDDN: A Cloud-Based Neuroinformation Database for Developing Neuronal Networks
Electrical activity of developing dissociated neuronal networks is of immense significance for understanding the general properties of neural information processing and storage. In addition, the complexity and diversity of network activity patterns make them ideal candidates for developing novel com...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057283/ https://www.ncbi.nlm.nih.gov/pubmed/30073046 http://dx.doi.org/10.1155/2018/3839094 |
Sumario: | Electrical activity of developing dissociated neuronal networks is of immense significance for understanding the general properties of neural information processing and storage. In addition, the complexity and diversity of network activity patterns make them ideal candidates for developing novel computational models and evaluating algorithms. However, there are rare databases which focus on the changing network dynamics during development. Here, we describe the design and implementation of Neuroinformation Database for Developing Networks (NDDN), a repository for electrophysiological data collected from long-term cultured hippocampal networks. The NDDN contains over 15 terabytes of multielectrode array data consisting of 25,380 items collected from 105 culture batches. Metadata including culturing and recording information and stimulation/drug application protocols are linked to each data item. A Matlab toolbox named MEAKit is also provided with the NDDN to ease the analysis of downloaded data items. We expect that NDDN may contribute to both the fields of experimental and computational neuroscience. |
---|