Cargando…
Emotion Recognition Based on Weighted Fusion Strategy of Multichannel Physiological Signals
Emotion recognition is an important pattern recognition problem that has inspired researchers for several areas. Various data from humans for emotion recognition have been developed, including visual, audio, and physiological signals data. This paper proposes a decision-level weight fusion strategy...
Autores principales: | Wei, Wei, Jia, Qingxuan, Feng, Yongli, Chen, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057426/ https://www.ncbi.nlm.nih.gov/pubmed/30073024 http://dx.doi.org/10.1155/2018/5296523 |
Ejemplares similares
-
Emotion Recognition Based on Multichannel Physiological Signals with Comprehensive Nonlinear Processing
por: Zhang, Xingxing, et al.
Publicado: (2018) -
Multimodal Emotion Recognition Based on Cascaded Multichannel and Hierarchical Fusion
por: Liu, Xia, et al.
Publicado: (2023) -
Weighted Feature Gaussian Kernel SVM for Emotion Recognition
por: Wei, Wei, et al.
Publicado: (2016) -
Recognition of Emotions Using Multichannel EEG Data and DBN-GC-Based Ensemble Deep Learning Framework
por: Chao, Hao, et al.
Publicado: (2018) -
Entropy-Based Emotion Recognition from Multichannel EEG Signals Using Artificial Neural Network
por: Aung, Si Thu, et al.
Publicado: (2022)