Cargando…
A merged lung cancer transcriptome dataset for clinical predictive modeling
The Gene Expression Omnibus (GEO) database is an excellent public source of whole transcriptomic profiles of multiple cancers. The main challenge is the limited accessibility of such large-scale genomic data to people without a background in bioinformatics or computer science. This presents difficul...
Autores principales: | Lim, Su Bin, Tan, Swee Jin, Lim, Wan-Teck, Lim, Chwee Teck |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057440/ https://www.ncbi.nlm.nih.gov/pubmed/30040079 http://dx.doi.org/10.1038/sdata.2018.136 |
Ejemplares similares
-
Compendiums of cancer transcriptomes for machine learning applications
por: Lim, Su Bin, et al.
Publicado: (2019) -
An extracellular matrix-related prognostic and predictive indicator for early-stage non-small cell lung cancer
por: LIM, Su Bin, et al.
Publicado: (2017) -
A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression
por: Rohr, Michael, et al.
Publicado: (2021) -
Single-Cell Analysis of Circulating Tumor Cells: Why Heterogeneity Matters
por: Lim, Su Bin, et al.
Publicado: (2019) -
Pan-cancer analysis connects tumor matrisome to immune response
por: Lim, Su Bin, et al.
Publicado: (2019)