Cargando…
Plasmonic Enhancement of Two-Photon-Excited Luminescence of Single Quantum Dots by Individual Gold Nanorods
[Image: see text] Plasmonic enhancement of two-photon-excited fluorescence is not only of fundamental interest but also appealing for many bioimaging and photonic applications. The high peak intensity required for two-photon excitation may cause shape changes in plasmonic nanostructures, as well as...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057742/ https://www.ncbi.nlm.nih.gov/pubmed/30057930 http://dx.doi.org/10.1021/acsphotonics.8b00306 |
Sumario: | [Image: see text] Plasmonic enhancement of two-photon-excited fluorescence is not only of fundamental interest but also appealing for many bioimaging and photonic applications. The high peak intensity required for two-photon excitation may cause shape changes in plasmonic nanostructures, as well as transient plasmon broadening. Yet, in this work, we report on strong enhancement of the two-photon-excited photoluminescence of single colloidal quantum dots close to isolated chemically synthesized gold nanorods. Upon resonant excitation of the localized surface plasmon resonance, a gold nanorod can enhance the photoluminescence of a single quantum dot more than 10 000-fold. This strong enhancement arises from the combined effect of local field amplification and the competition between radiative and nonradiative decay rate enhancements, as is confirmed by time-resolved fluorescence measurements and numerical simulations. |
---|