Cargando…
FliL association with flagellar stator in the sodium-driven Vibrio motor characterized by the fluorescent microscopy
Bacterial flagellar motor (BFM) is a protein complex used for bacterial motility and chemotaxis that involves in energy transformation, torque generation and switching. FliL is a single-transmembrane protein associated with flagellar motor function. We performed biochemical and biophysical approache...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057877/ https://www.ncbi.nlm.nih.gov/pubmed/30042401 http://dx.doi.org/10.1038/s41598-018-29447-x |
Sumario: | Bacterial flagellar motor (BFM) is a protein complex used for bacterial motility and chemotaxis that involves in energy transformation, torque generation and switching. FliL is a single-transmembrane protein associated with flagellar motor function. We performed biochemical and biophysical approaches to investigate the functional roles of FliL associated with stator-units. Firstly, we found the periplasmic region of FliL is crucial for its polar localization. Also, the plug mutation in stator-unit affected the polar localization of FliL implying the activation of stator-unit is important for FliL recruitment. Secondly, we applied single-molecule fluorescent microscopy to study the role of FliL in stator-unit assembly. Using molecular counting by photobleaching, we found the stoichiometry of stator-unit and FliL protein would be 1:1 in a functional motor. Moreover, the turnover time of stator-units are slightly increased in the absence of FliL. By further investigation of protein dynamics on membrane, we found the diffusions of stator-units and FliL are independent. Surprisingly, the FliL diffusion rate without stator-units is unexpectedly slow indicating a protein-complex forming event. Our results suggest that FliL plays a supporting role to the stator in the BFM. |
---|