Cargando…
Using Multi-Scale Genetic, Neuroimaging and Clinical Data for Predicting Alzheimer’s Disease and Reconstruction of Relevant Biological Mechanisms
Alzheimer’s Disease (AD) is among the most frequent neuro-degenerative diseases. Early diagnosis is essential for successful disease management and chance to attenuate symptoms by disease modifying drugs. In the past, a number of cerebrospinal fluid (CSF), plasma and neuro-imaging based biomarkers h...
Autores principales: | Khanna, Shashank, Domingo-Fernández, Daniel, Iyappan, Anandhi, Emon, Mohammad Asif, Hofmann-Apitius, Martin, Fröhlich, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057884/ https://www.ncbi.nlm.nih.gov/pubmed/30042519 http://dx.doi.org/10.1038/s41598-018-29433-3 |
Ejemplares similares
-
Neuroimaging Feature Terminology: A Controlled Terminology for the Annotation of Brain Imaging Features
por: Iyappan, Anandhi, et al.
Publicado: (2017) -
A Systems Biology Approach for Hypothesizing the Effect of Genetic Variants on Neuroimaging Features in Alzheimer’s Disease
por: Golriz Khatami, Sepehr, et al.
Publicado: (2021) -
Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders
por: Sood, Meemansa, et al.
Publicado: (2020) -
NeuroRDF: semantic integration of highly curated data to prioritize biomarker candidates in Alzheimer's disease
por: Iyappan, Anandhi, et al.
Publicado: (2016) -
Multimodal mechanistic signatures for neurodegenerative diseases (NeuroMMSig): a web server for mechanism enrichment
por: Domingo-Fernández, Daniel, et al.
Publicado: (2017)