Cargando…
Smallanthus sonchifolius leaf attenuates neuroinflammation
[PURPOSE]: Yacon, Smallanthus sonchifolius, has anti-hypertensive, anti-inflammatory, and anti-cancer potential. However, its neuroprotective and anti-neuroinflammatory effects are unknown. Moreover, activation of microglia has been considered a mechanism in the development of Alzheimer’s disease. T...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
한국운동영양학회
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058067/ https://www.ncbi.nlm.nih.gov/pubmed/30149424 http://dx.doi.org/10.20463/jenb.2018.0014 |
Sumario: | [PURPOSE]: Yacon, Smallanthus sonchifolius, has anti-hypertensive, anti-inflammatory, and anti-cancer potential. However, its neuroprotective and anti-neuroinflammatory effects are unknown. Moreover, activation of microglia has been considered a mechanism in the development of Alzheimer’s disease. Therefore, the aim of this study was to determine the neuroprotective effects of an ethanolic yacon leaf extract (YLE) on lipopolysaccharide (LPS)-induced neuroinflammation in vitro and in vivo. [METHODS]: The viability of microglial BV2 cells was tested with 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolim-5-carboxanilide. The production of nitric oxide (NO) was determined by the Griess reagent. mRNA expression and protein levels of inflammatory mediators were evaluated by the real-time polymerase chain reaction and immunohistochemistry, respectively. In addition, we performed histological analysis in mice treated with an intraperitoneal injection of LPS (250 μg/kg). [RESULTS]: Our results showed that treatment with YLE significantly reduced NO production in LPS-stimulated BV2 cells. YLE also decreased mRNA levels of the inflammatory factors tumor necrosis factor alpha, inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1 beta. In vivo, YLE (40 mg/kg daily for seven days) significantly diminished LPS-induced tissue damage in the dentate gyrus and cornu amonis regions of the hippocampus by regulating the levels of inflammatory factors. [CONCLUSION]: Our findings support the protective effects of YLE against the development of neurodegeneration. |
---|