Cargando…

Dysregulation of PI3K-Akt-mTOR pathway in brain of streptozotocin-induced type 2 diabetes mellitus in Wistar rats

BACKGROUND: Proteins of the insulin signaling pathway are needed for cell proliferation and development and glucose homeostasis. It is not known whether insulin signalling markers (Foxo1, Gsk3β) can be correlated with the expression on PI3K-Akt-mTOR pathway, which are needed for cell survival and ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Bathina, Siresha, Das, Undurti N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058366/
https://www.ncbi.nlm.nih.gov/pubmed/30041644
http://dx.doi.org/10.1186/s12944-018-0809-2
Descripción
Sumario:BACKGROUND: Proteins of the insulin signaling pathway are needed for cell proliferation and development and glucose homeostasis. It is not known whether insulin signalling markers (Foxo1, Gsk3β) can be correlated with the expression on PI3K-Akt-mTOR pathway, which are needed for cell survival and maintenance of glucose homeostasis. In the present study, we studied the expression of Foxo1, Gsk3β and PI3K-Akt-mTOR in the brain of streptozotocin-induced type 2 diabetes mellitus Wistar rats. METHODS: The study was performed both in vitro (RIN5F cells) and in vivo (male Wistar rats). Gene expression of Nf-kB, IkB, Bax, Bcl-2 and Pdx1 gene was studied invitro by qRT-PCR in RIN5F cells. In STZ (65 mg/kg i.p.)-induced type 2 DM Wistar rats, blood glucose and insulin levels, iNOS, Foxo1, NF-κB, pGsk3β and PPAR-γ1 levels along with PI3k-Akt-mTOR were measured in brain tissue. RESULTS: RIN5F cells treated with STZ showed increase in the expression of NF-kB and Bax and decrease in IkB, Bcl-2 and PDX1. Brain tissue of STZ-induced type 2 DM animals showed a significant reduction in secondary messengers of insulin signalling (Foxo1) (P < 0.001) and Gsk3β (P < 0.01) and a significant alteration in the expression of phosphorylated-Akt (P < 0.001) mTOR (P < 0.01) and PI3K. CONCLUSION: These results suggest that STZ induces pancreatic β cell apoptosis by enhancing inflammation. Significant alterations in the expression brain insulin signaling and cell survival pathways seen in brain of STZ-treated animals implies that alterations neuronal apoptosis may have a role in altered glucose homeostasis seen in type 2 DM that may also explain the increased incidence of cognitive dysfunction seen in them.