Cargando…

Accounting for location uncertainty in azimuthal telemetry data improves ecological inference

BACKGROUND: Characterizing animal space use is critical for understanding ecological relationships. Animal telemetry technology has revolutionized the fields of ecology and conservation biology by providing high quality spatial data on animal movement. Radio-telemetry with very high frequency (VHF)...

Descripción completa

Detalles Bibliográficos
Autores principales: Gerber, Brian D., Hooten, Mevin B., Peck, Christopher P., Rice, Mindy B., Gammonley, James H., Apa, Anthony D., Davis, Amy J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058391/
https://www.ncbi.nlm.nih.gov/pubmed/30062012
http://dx.doi.org/10.1186/s40462-018-0129-1
_version_ 1783341684756578304
author Gerber, Brian D.
Hooten, Mevin B.
Peck, Christopher P.
Rice, Mindy B.
Gammonley, James H.
Apa, Anthony D.
Davis, Amy J.
author_facet Gerber, Brian D.
Hooten, Mevin B.
Peck, Christopher P.
Rice, Mindy B.
Gammonley, James H.
Apa, Anthony D.
Davis, Amy J.
author_sort Gerber, Brian D.
collection PubMed
description BACKGROUND: Characterizing animal space use is critical for understanding ecological relationships. Animal telemetry technology has revolutionized the fields of ecology and conservation biology by providing high quality spatial data on animal movement. Radio-telemetry with very high frequency (VHF) radio signals continues to be a useful technology because of its low cost, miniaturization, and low battery requirements. Despite a number of statistical developments synthetically integrating animal location estimation and uncertainty with spatial process models using satellite telemetry data, we are unaware of similar developments for azimuthal telemetry data. As such, there are few statistical options to handle these unique data and no synthetic framework for modeling animal location uncertainty and accounting for it in ecological models. We developed a hierarchical modeling framework to provide robust animal location estimates from one or more intersecting or non-intersecting azimuths. We used our azimuthal telemetry model (ATM) to account for azimuthal uncertainty with covariates and propagate location uncertainty into spatial ecological models. We evaluate the ATM with commonly used estimators (Lenth (1981) maximum likelihood and M-Estimators) using simulation. We also provide illustrative empirical examples, demonstrating the impact of ignoring location uncertainty within home range and resource selection analyses. We further use simulation to better understand the relationship among location uncertainty, spatial covariate autocorrelation, and resource selection inference. RESULTS: We found the ATM to have good performance in estimating locations and the only model that has appropriate measures of coverage. Ignoring animal location uncertainty when estimating resource selection or home ranges can have pernicious effects on ecological inference. Home range estimates can be overly confident and conservative when ignoring location uncertainty and resource selection coefficients can lead to incorrect inference and over confidence in the magnitude of selection. Furthermore, our simulation study clarified that incorporating location uncertainty helps reduce bias in resource selection coefficients across all levels of covariate spatial autocorrelation. CONCLUSION: The ATM can accommodate one or more azimuths when estimating animal locations, regardless of how they intersect; this ensures that all data collected are used for ecological inference. Our findings and model development have important implications for interpreting historical analyses using this type of data and the future design of radio-telemetry studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40462-018-0129-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6058391
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-60583912018-07-30 Accounting for location uncertainty in azimuthal telemetry data improves ecological inference Gerber, Brian D. Hooten, Mevin B. Peck, Christopher P. Rice, Mindy B. Gammonley, James H. Apa, Anthony D. Davis, Amy J. Mov Ecol Methodology Article BACKGROUND: Characterizing animal space use is critical for understanding ecological relationships. Animal telemetry technology has revolutionized the fields of ecology and conservation biology by providing high quality spatial data on animal movement. Radio-telemetry with very high frequency (VHF) radio signals continues to be a useful technology because of its low cost, miniaturization, and low battery requirements. Despite a number of statistical developments synthetically integrating animal location estimation and uncertainty with spatial process models using satellite telemetry data, we are unaware of similar developments for azimuthal telemetry data. As such, there are few statistical options to handle these unique data and no synthetic framework for modeling animal location uncertainty and accounting for it in ecological models. We developed a hierarchical modeling framework to provide robust animal location estimates from one or more intersecting or non-intersecting azimuths. We used our azimuthal telemetry model (ATM) to account for azimuthal uncertainty with covariates and propagate location uncertainty into spatial ecological models. We evaluate the ATM with commonly used estimators (Lenth (1981) maximum likelihood and M-Estimators) using simulation. We also provide illustrative empirical examples, demonstrating the impact of ignoring location uncertainty within home range and resource selection analyses. We further use simulation to better understand the relationship among location uncertainty, spatial covariate autocorrelation, and resource selection inference. RESULTS: We found the ATM to have good performance in estimating locations and the only model that has appropriate measures of coverage. Ignoring animal location uncertainty when estimating resource selection or home ranges can have pernicious effects on ecological inference. Home range estimates can be overly confident and conservative when ignoring location uncertainty and resource selection coefficients can lead to incorrect inference and over confidence in the magnitude of selection. Furthermore, our simulation study clarified that incorporating location uncertainty helps reduce bias in resource selection coefficients across all levels of covariate spatial autocorrelation. CONCLUSION: The ATM can accommodate one or more azimuths when estimating animal locations, regardless of how they intersect; this ensures that all data collected are used for ecological inference. Our findings and model development have important implications for interpreting historical analyses using this type of data and the future design of radio-telemetry studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40462-018-0129-1) contains supplementary material, which is available to authorized users. BioMed Central 2018-07-25 /pmc/articles/PMC6058391/ /pubmed/30062012 http://dx.doi.org/10.1186/s40462-018-0129-1 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Methodology Article
Gerber, Brian D.
Hooten, Mevin B.
Peck, Christopher P.
Rice, Mindy B.
Gammonley, James H.
Apa, Anthony D.
Davis, Amy J.
Accounting for location uncertainty in azimuthal telemetry data improves ecological inference
title Accounting for location uncertainty in azimuthal telemetry data improves ecological inference
title_full Accounting for location uncertainty in azimuthal telemetry data improves ecological inference
title_fullStr Accounting for location uncertainty in azimuthal telemetry data improves ecological inference
title_full_unstemmed Accounting for location uncertainty in azimuthal telemetry data improves ecological inference
title_short Accounting for location uncertainty in azimuthal telemetry data improves ecological inference
title_sort accounting for location uncertainty in azimuthal telemetry data improves ecological inference
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058391/
https://www.ncbi.nlm.nih.gov/pubmed/30062012
http://dx.doi.org/10.1186/s40462-018-0129-1
work_keys_str_mv AT gerberbriand accountingforlocationuncertaintyinazimuthaltelemetrydataimprovesecologicalinference
AT hootenmevinb accountingforlocationuncertaintyinazimuthaltelemetrydataimprovesecologicalinference
AT peckchristopherp accountingforlocationuncertaintyinazimuthaltelemetrydataimprovesecologicalinference
AT ricemindyb accountingforlocationuncertaintyinazimuthaltelemetrydataimprovesecologicalinference
AT gammonleyjamesh accountingforlocationuncertaintyinazimuthaltelemetrydataimprovesecologicalinference
AT apaanthonyd accountingforlocationuncertaintyinazimuthaltelemetrydataimprovesecologicalinference
AT davisamyj accountingforlocationuncertaintyinazimuthaltelemetrydataimprovesecologicalinference