Cargando…

Peculiarities of the formation and subsequent removal of the circulating immune complexes from the bloodstream during the process of digestion

Background: Large protein aggregates, known as circulating immune complexes (CICs), are formed in biological fluids as a result of the development of the body's immune response to various provoking factors. The kinetic characteristics of the formation and removal of immune complexes (ICs), thei...

Descripción completa

Detalles Bibliográficos
Autores principales: Landa, Sergej B., Korabliov, Pavel V., Semenova, Elena V., Filatov, Michael V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058468/
https://www.ncbi.nlm.nih.gov/pubmed/30079242
http://dx.doi.org/10.12688/f1000research.14406.1
Descripción
Sumario:Background: Large protein aggregates, known as circulating immune complexes (CICs), are formed in biological fluids as a result of the development of the body's immune response to various provoking factors. The kinetic characteristics of the formation and removal of immune complexes (ICs), their physical parameters, the isotypic composition of immunoglobulins (Igs) and the antigenic component of the CICs may reflect certain aspects of certain pathological and metabolic processes taking place in humans and animals. The aim of this study is to assess the kinetic characteristics of the formation and removal of the CICs that form in blood after eating. We also analyze the changes in the isotypic composition of Igs of ICs that accompany this biological process in rodents and humans. Methods: We identified the CICs, which differed in size and class of Igs, using dynamic light scattering. To remove ICs from the plasma, we used immune-affinity sedimentation. Monoclonal antibodies for the Igs of different isotypes were added to the plasma samples to determine the isotypic composition of the ICs. Results: A large number of ICs were formed in the blood of rats and humans after eating (food CICs). In rats, food ICs are almost immediately filtered in the liver, without circulating in the bloodstream through the body. In humans, the level of food ICs in the blood increases for 3.5 h after ingestion, then within 7–8 h their gradual removal takes place. It was found that in the process of digestion in humans, the isotypic composition of Igs in the CICs changes and becomes more diverse. Conclusions: The molecular–cellular mechanisms of the formation and utilization of food CICs in humans and rodents do not match completely.