Cargando…

CD34 and CD49f Double-Positive and Lineage Marker-Negative Cells Isolated from Human Myometrium Exhibit Stem Cell-Like Properties Involved in Pregnancy-Induced Uterine Remodeling(1)

Repeated and dramatic pregnancy-induced uterine enlargement and remodeling throughout reproductive life suggests the existence of uterine smooth muscle stem/progenitor cells. The aim of this study was to isolate and characterize stem/progenitor-like cells from human myometrium through identification...

Descripción completa

Detalles Bibliográficos
Autores principales: Ono, Masanori, Kajitani, Takashi, Uchida, Hiroshi, Arase, Toru, Oda, Hideyuki, Uchida, Sayaka, Ota, Kuniaki, Nagashima, Takashi, Masuda, Hirotaka, Miyazaki, Kaoru, Asada, Hironori, Hida, Naoko, Mabuchi, Yo, Morikawa, Satoru, Ito, Mamoru, Bulun, Serdar E., Okano, Hideyuki, Matsuzaki, Yumi, Yoshimura, Yasunori, Maruyama, Tetsuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058739/
https://www.ncbi.nlm.nih.gov/pubmed/26108791
http://dx.doi.org/10.1095/biolreprod.114.127126
Descripción
Sumario:Repeated and dramatic pregnancy-induced uterine enlargement and remodeling throughout reproductive life suggests the existence of uterine smooth muscle stem/progenitor cells. The aim of this study was to isolate and characterize stem/progenitor-like cells from human myometrium through identification of specific surface markers. We here identify CD49f and CD34 as markers to permit selection of the stem/progenitor cell-like population from human myometrium and show that human CD45(–) CD31(–) glycophorin A(–) and CD49f(+) CD34(+) myometrial cells exhibit stem cell-like properties. These include side population phenotypes, an undifferentiated status, high colony-forming ability, multilineage differentiation into smooth muscle cells, osteoblasts, adipocytes, and chondrocytes, and in vivo myometrial tissue reconstitution following xenotransplantation. Furthermore, CD45(–) CD31(–) glycophorin A(–) and CD49f(+) CD34(+) myometrial cells proliferate under hypoxic conditions in vitro and, compared with the untreated nonpregnant myometrium, show greater expansion in the estrogen-treated nonpregnant myometrium and further in the pregnant myometrium in mice upon xenotransplantation. These results suggest that the newly identified myometrial stem/progenitor-like cells influenced by hypoxia and sex steroids may participate in pregnancy-induced uterine enlargement and remodeling, providing novel insights into human myometrial physiology.