Cargando…
The Athletic Shoulder (ASH) test: reliability of a novel upper body isometric strength test in elite rugby players
OBJECTIVES: Lower limb isometric tests are used to assess strength and strength asymmetries and monitor reductions in muscle force that may contribute to loss of performance and increase injury risk. Isometric tests in the upper body may be appropriate to monitor neuromuscular performance of the sho...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059329/ https://www.ncbi.nlm.nih.gov/pubmed/30057775 http://dx.doi.org/10.1136/bmjsem-2018-000365 |
Sumario: | OBJECTIVES: Lower limb isometric tests are used to assess strength and strength asymmetries and monitor reductions in muscle force that may contribute to loss of performance and increase injury risk. Isometric tests in the upper body may be appropriate to monitor neuromuscular performance of the shoulder joint in sports involving contact and overhead actions. The aim of this study was to determine the reliability of a novel upper body isometric strength test. METHODS: Eighteen elite rugby players (age 22.4±4.6 years; body mass 95.5±13.4 kg) were tested on consecutive days. Maximal isometric contractions using both limbs against a force platform were assessed at three angles of abduction (180°, ‘I’; 135°, ‘Y’ and 90°, ‘T’), in a prone lying position. To evaluate interday reliability, intraclass coefficients (ICC) were calculated for mean net peak force (NPF) and highest NPF achieved in any trial (peak NPF). Intratrial variability was assessed using coefficient of variation (CV), and the standard error of measurement (SEM) was used to calculate minimal detectable change (MDC). RESULTS: Interday reliability for NPF was excellent in all test positions (ICC 0.94–0.98). The test demonstrated high absolute reliability values (SEM 4.8–10.8) and interday measurement error was below 10% in all test positions (CV 5.0–9.9%) except for the non-dominant arm I-position (CV 11.3%). Minimum detectable change was between 13.2 and 25.9 N. CONCLUSION: The Athletic Shoulder test demonstrated excellent reliability for each test position supporting its use as a reliable tool to quantify the ability to produce and transfer force across the shoulder girdle. |
---|