Cargando…
A Systems Biology Approach to Understanding the Pathophysiology of High-Grade Serous Ovarian Cancer: Focus on Iron and Fatty Acid Metabolism
Ovarian cancer (OVC) is the most lethal of the gynecological malignancies, with diagnosis often occurring during advanced stages of the disease. Moreover, a majority of cases become refractory to chemotherapeutic approaches. Therefore, it is important to improve our understanding of the molecular de...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059353/ https://www.ncbi.nlm.nih.gov/pubmed/30004845 http://dx.doi.org/10.1089/omi.2018.0060 |
_version_ | 1783341847481942016 |
---|---|
author | Konstorum, Anna Lynch, Miranda L. Torti, Suzy V. Torti, Frank M. Laubenbacher, Reinhard C. |
author_facet | Konstorum, Anna Lynch, Miranda L. Torti, Suzy V. Torti, Frank M. Laubenbacher, Reinhard C. |
author_sort | Konstorum, Anna |
collection | PubMed |
description | Ovarian cancer (OVC) is the most lethal of the gynecological malignancies, with diagnosis often occurring during advanced stages of the disease. Moreover, a majority of cases become refractory to chemotherapeutic approaches. Therefore, it is important to improve our understanding of the molecular dependencies underlying the disease to identify novel diagnostic and precision therapeutics for OVC. Cancer cells are known to sequester iron, which can potentiate cancer progression through mechanisms that have not yet been completely elucidated. We developed an algorithm to identify novel links between iron and pathways implicated in high-grade serous ovarian cancer (HGSOC), the most common and deadliest subtype of OVC, using microarray gene expression data from both clinical sources and an experimental model. Using our approach, we identified several links between fatty acid (FA) and iron metabolism, and subsequently developed a network for iron involvement in FA metabolism in HGSOC. FA import and synthesis pathways are upregulated in HGSOC and other cancers, but a link between these processes and iron-related genes has not yet been identified. We used the network to derive hypotheses of specific mechanisms by which iron and iron-related genes impact and interact with FA metabolic pathways to promote tumorigenesis. These results suggest a novel mechanism by which iron sequestration by cancer cells can potentiate cancer progression, and may provide novel targets for use in diagnosis and/or treatment of HGSOC. |
format | Online Article Text |
id | pubmed-6059353 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Mary Ann Liebert, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60593532018-07-31 A Systems Biology Approach to Understanding the Pathophysiology of High-Grade Serous Ovarian Cancer: Focus on Iron and Fatty Acid Metabolism Konstorum, Anna Lynch, Miranda L. Torti, Suzy V. Torti, Frank M. Laubenbacher, Reinhard C. OMICS Original Research Ovarian cancer (OVC) is the most lethal of the gynecological malignancies, with diagnosis often occurring during advanced stages of the disease. Moreover, a majority of cases become refractory to chemotherapeutic approaches. Therefore, it is important to improve our understanding of the molecular dependencies underlying the disease to identify novel diagnostic and precision therapeutics for OVC. Cancer cells are known to sequester iron, which can potentiate cancer progression through mechanisms that have not yet been completely elucidated. We developed an algorithm to identify novel links between iron and pathways implicated in high-grade serous ovarian cancer (HGSOC), the most common and deadliest subtype of OVC, using microarray gene expression data from both clinical sources and an experimental model. Using our approach, we identified several links between fatty acid (FA) and iron metabolism, and subsequently developed a network for iron involvement in FA metabolism in HGSOC. FA import and synthesis pathways are upregulated in HGSOC and other cancers, but a link between these processes and iron-related genes has not yet been identified. We used the network to derive hypotheses of specific mechanisms by which iron and iron-related genes impact and interact with FA metabolic pathways to promote tumorigenesis. These results suggest a novel mechanism by which iron sequestration by cancer cells can potentiate cancer progression, and may provide novel targets for use in diagnosis and/or treatment of HGSOC. Mary Ann Liebert, Inc. 2018-07-01 2018-07-01 /pmc/articles/PMC6059353/ /pubmed/30004845 http://dx.doi.org/10.1089/omi.2018.0060 Text en © Anna Konstorum, et al., 2018. Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Original Research Konstorum, Anna Lynch, Miranda L. Torti, Suzy V. Torti, Frank M. Laubenbacher, Reinhard C. A Systems Biology Approach to Understanding the Pathophysiology of High-Grade Serous Ovarian Cancer: Focus on Iron and Fatty Acid Metabolism |
title | A Systems Biology Approach to Understanding the Pathophysiology of High-Grade Serous Ovarian Cancer: Focus on Iron and Fatty Acid Metabolism |
title_full | A Systems Biology Approach to Understanding the Pathophysiology of High-Grade Serous Ovarian Cancer: Focus on Iron and Fatty Acid Metabolism |
title_fullStr | A Systems Biology Approach to Understanding the Pathophysiology of High-Grade Serous Ovarian Cancer: Focus on Iron and Fatty Acid Metabolism |
title_full_unstemmed | A Systems Biology Approach to Understanding the Pathophysiology of High-Grade Serous Ovarian Cancer: Focus on Iron and Fatty Acid Metabolism |
title_short | A Systems Biology Approach to Understanding the Pathophysiology of High-Grade Serous Ovarian Cancer: Focus on Iron and Fatty Acid Metabolism |
title_sort | systems biology approach to understanding the pathophysiology of high-grade serous ovarian cancer: focus on iron and fatty acid metabolism |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059353/ https://www.ncbi.nlm.nih.gov/pubmed/30004845 http://dx.doi.org/10.1089/omi.2018.0060 |
work_keys_str_mv | AT konstorumanna asystemsbiologyapproachtounderstandingthepathophysiologyofhighgradeserousovariancancerfocusonironandfattyacidmetabolism AT lynchmirandal asystemsbiologyapproachtounderstandingthepathophysiologyofhighgradeserousovariancancerfocusonironandfattyacidmetabolism AT tortisuzyv asystemsbiologyapproachtounderstandingthepathophysiologyofhighgradeserousovariancancerfocusonironandfattyacidmetabolism AT tortifrankm asystemsbiologyapproachtounderstandingthepathophysiologyofhighgradeserousovariancancerfocusonironandfattyacidmetabolism AT laubenbacherreinhardc asystemsbiologyapproachtounderstandingthepathophysiologyofhighgradeserousovariancancerfocusonironandfattyacidmetabolism AT konstorumanna systemsbiologyapproachtounderstandingthepathophysiologyofhighgradeserousovariancancerfocusonironandfattyacidmetabolism AT lynchmirandal systemsbiologyapproachtounderstandingthepathophysiologyofhighgradeserousovariancancerfocusonironandfattyacidmetabolism AT tortisuzyv systemsbiologyapproachtounderstandingthepathophysiologyofhighgradeserousovariancancerfocusonironandfattyacidmetabolism AT tortifrankm systemsbiologyapproachtounderstandingthepathophysiologyofhighgradeserousovariancancerfocusonironandfattyacidmetabolism AT laubenbacherreinhardc systemsbiologyapproachtounderstandingthepathophysiologyofhighgradeserousovariancancerfocusonironandfattyacidmetabolism |