Cargando…

Spatio-temporal migratory dynamics of Jasus frontalis (Milne Edwards, 1837) in Alexander Selkirk Island, Juan Fernández archipelago, Chile

Knowledge about the spatial patterns and movements of crustaceans has gained importance since the creation of marine protected areas and the development of spatial management for benthic ecosystems. The Juan Fernández spiny lobster (Jasus frontalis) is an endemic marine species and most valuable res...

Descripción completa

Detalles Bibliográficos
Autores principales: Román, Catalina, Ernst, Billy, Thiel, Martin, Manríquez, Pablo, Chamorro, Julio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059422/
https://www.ncbi.nlm.nih.gov/pubmed/30044805
http://dx.doi.org/10.1371/journal.pone.0200146
Descripción
Sumario:Knowledge about the spatial patterns and movements of crustaceans has gained importance since the creation of marine protected areas and the development of spatial management for benthic ecosystems. The Juan Fernández spiny lobster (Jasus frontalis) is an endemic marine species and most valuable resource that exhibits migratory dynamics in a highly spatially regulated fishery. To study movement patterns around Alexander Selkirk Island, a mark-recapture program was implemented in 2008, when approximately 7000 non-commercial (undersized) lobsters were tagged and followed for nearly 14 months. Using quantitative georeferenced data, this study revealed spatial structuring of Juan Fernández spiny lobster and tested hypotheses about alongshore and inshore-offshore movements. Eight clusters were identified around Alexander Selkirk Island, with moderate time-varying connectivity between them. Seasonal inshore-offshore movements were detected all around the island, but more conspicuously to the north. Average travelling distance was 1.2 km (1.7 sd). Our results confirmed that towards the end of austral spring males and females embark in a seasonal offshore migration to deeper waters, returning to shallower waters only during winter. These findings quantitatively consolidate the conceptual migratory model that local fishermen had already inferred for this resource from about a century of sustainable fishing.