Cargando…
CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions
How can we find patterns and anomalies in a tensor, i.e., multi-dimensional array, in an efficient and directly interpretable way? How can we do this in an online environment, where a new tensor arrives at each time step? Finding patterns and anomalies in multi-dimensional data have many important a...
Autores principales: | Lee, Jungwoo, Choi, Dongjin, Sael, Lee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059458/ https://www.ncbi.nlm.nih.gov/pubmed/30044837 http://dx.doi.org/10.1371/journal.pone.0200579 |
Ejemplares similares
-
GIFT: Guided and Interpretable Factorization for Tensors with an application to large-scale multi-platform cancer analysis
por: Lee, Jungwoo, et al.
Publicado: (2018) -
S(3)CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization
por: Choi, Dongjin, et al.
Publicado: (2019) -
Fast and accurate interpretation of workload classification model
por: Shim, Sooyeon, et al.
Publicado: (2023) -
On the Decomposition of Tensors by Contraction
por: Racah, Giulio
Publicado: (1949) -
Tensor Multi-Clustering Parallel Intelligent Computing Method Based on Tensor Chain Decomposition
por: Zhang, Hongjun, et al.
Publicado: (2022)