Cargando…
Data reconstruction using iteratively reweighted L1-principal component analysis for an electronic nose system
We propose a method to reconstruct damaged data based on statistical learning during data acquisition. In the process of measuring the data using a sensor, the damage of the data caused by the defect of the sensor or the environmental factor greatly degrades the performance of data classification. I...
Autores principales: | Jeon, Hong-Min, Lee, Je-Yeol, Jeong, Gu-Min, Choi, Sang-Il |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059466/ https://www.ncbi.nlm.nih.gov/pubmed/30044840 http://dx.doi.org/10.1371/journal.pone.0200605 |
Ejemplares similares
-
Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares
por: Zhang, Cheng, et al.
Publicado: (2016) -
Spectral Reconstruction Using an Iteratively Reweighted Regulated Model from Two Illumination Camera Responses
por: Liu, Zhen, et al.
Publicado: (2021) -
Proximal iteratively reweighted algorithm for low-rank matrix recovery
por: Ma, Chao-Qun, et al.
Publicado: (2018) -
Deep Unfolding of Iteratively Reweighted ADMM for Wireless RF Sensing
por: Miriya Thanthrige, Udaya S. K. P., et al.
Publicado: (2022) -
Patch-based, iteratively-reweighted compressive recovery for reconstruction of highly accelerated exercise stress cardiac cine
por: Ting, Samuel T, et al.
Publicado: (2016)